Matches in SemOpenAlex for { <https://semopenalex.org/work/W3011448892> ?p ?o ?g. }
- W3011448892 endingPage "1536" @default.
- W3011448892 startingPage "1536" @default.
- W3011448892 abstract "Magnetic Resonance (MR) Imaging is a diagnostic technique that produces noisy images, which must be filtered before processing to prevent diagnostic errors. However, filtering the noise while keeping fine details is a difficult task. This paper presents a method, based on sparse representations and singular value decomposition (SVD), for non-locally denoising MR images. The proposed method prevents blurring, artifacts, and residual noise. Our method is composed of three stages. The first stage divides the image into sub-volumes, to obtain its sparse representation, by using the KSVD algorithm. Then, the global influence of the dictionary atoms is computed to upgrade the dictionary and obtain a better reconstruction of the sub-volumes. In the second stage, based on the sparse representation, the noise-free sub-volume is estimated using a non-local approach and SVD. The noise-free voxel is reconstructed by aggregating the overlapped voxels according to the rarity of the sub-volumes it belongs, which is computed from the global influence of the atoms. The third stage repeats the process using a different sub-volume size for producing a new filtered image, which is averaged with the previously filtered images. The results provided show that our method outperforms several state-of-the-art methods in both simulated and real data." @default.
- W3011448892 created "2020-03-23" @default.
- W3011448892 creator A5037048332 @default.
- W3011448892 creator A5060692482 @default.
- W3011448892 creator A5065074519 @default.
- W3011448892 date "2020-03-10" @default.
- W3011448892 modified "2023-09-26" @default.
- W3011448892 title "Non-Local SVD Denoising of MRI Based on Sparse Representations" @default.
- W3011448892 cites W1974438823 @default.
- W3011448892 cites W1976767948 @default.
- W3011448892 cites W1992405901 @default.
- W3011448892 cites W1998433034 @default.
- W3011448892 cites W2003884262 @default.
- W3011448892 cites W2004026774 @default.
- W3011448892 cites W2014311222 @default.
- W3011448892 cites W2014940628 @default.
- W3011448892 cites W2023167539 @default.
- W3011448892 cites W2045354372 @default.
- W3011448892 cites W2046372571 @default.
- W3011448892 cites W2052186216 @default.
- W3011448892 cites W2055472139 @default.
- W3011448892 cites W2059784307 @default.
- W3011448892 cites W2064076387 @default.
- W3011448892 cites W2073660032 @default.
- W3011448892 cites W2097552711 @default.
- W3011448892 cites W2100476200 @default.
- W3011448892 cites W2125993358 @default.
- W3011448892 cites W2130187411 @default.
- W3011448892 cites W2133665775 @default.
- W3011448892 cites W2136396015 @default.
- W3011448892 cites W2141695289 @default.
- W3011448892 cites W2142356139 @default.
- W3011448892 cites W2142592339 @default.
- W3011448892 cites W2144783994 @default.
- W3011448892 cites W2153663612 @default.
- W3011448892 cites W2154011501 @default.
- W3011448892 cites W2155981690 @default.
- W3011448892 cites W2156668482 @default.
- W3011448892 cites W2157596805 @default.
- W3011448892 cites W2160547390 @default.
- W3011448892 cites W2331334294 @default.
- W3011448892 cites W2338249037 @default.
- W3011448892 cites W2339758283 @default.
- W3011448892 cites W2415447328 @default.
- W3011448892 cites W2508457857 @default.
- W3011448892 cites W2508982726 @default.
- W3011448892 cites W2530600186 @default.
- W3011448892 cites W2568393483 @default.
- W3011448892 cites W2605601662 @default.
- W3011448892 cites W2608546622 @default.
- W3011448892 cites W2616344061 @default.
- W3011448892 cites W2741247953 @default.
- W3011448892 cites W2769248053 @default.
- W3011448892 cites W2769764698 @default.
- W3011448892 cites W2777741489 @default.
- W3011448892 cites W2784655485 @default.
- W3011448892 cites W2793890232 @default.
- W3011448892 cites W2802883448 @default.
- W3011448892 cites W2887120790 @default.
- W3011448892 cites W2887579808 @default.
- W3011448892 cites W2909350396 @default.
- W3011448892 cites W2911155111 @default.
- W3011448892 cites W2917409980 @default.
- W3011448892 cites W2918478736 @default.
- W3011448892 cites W2941752103 @default.
- W3011448892 cites W2959706953 @default.
- W3011448892 cites W2968857032 @default.
- W3011448892 cites W2971983564 @default.
- W3011448892 doi "https://doi.org/10.3390/s20051536" @default.
- W3011448892 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7085762" @default.
- W3011448892 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32164373" @default.
- W3011448892 hasPublicationYear "2020" @default.
- W3011448892 type Work @default.
- W3011448892 sameAs 3011448892 @default.
- W3011448892 citedByCount "14" @default.
- W3011448892 countsByYear W30114488922020 @default.
- W3011448892 countsByYear W30114488922021 @default.
- W3011448892 countsByYear W30114488922022 @default.
- W3011448892 countsByYear W30114488922023 @default.
- W3011448892 crossrefType "journal-article" @default.
- W3011448892 hasAuthorship W3011448892A5037048332 @default.
- W3011448892 hasAuthorship W3011448892A5060692482 @default.
- W3011448892 hasAuthorship W3011448892A5065074519 @default.
- W3011448892 hasBestOaLocation W30114488921 @default.
- W3011448892 hasConcept C11413529 @default.
- W3011448892 hasConcept C115961682 @default.
- W3011448892 hasConcept C124066611 @default.
- W3011448892 hasConcept C153180895 @default.
- W3011448892 hasConcept C154771677 @default.
- W3011448892 hasConcept C154945302 @default.
- W3011448892 hasConcept C155512373 @default.
- W3011448892 hasConcept C163294075 @default.
- W3011448892 hasConcept C17744445 @default.
- W3011448892 hasConcept C199539241 @default.
- W3011448892 hasConcept C22789450 @default.
- W3011448892 hasConcept C2776359362 @default.
- W3011448892 hasConcept C31972630 @default.
- W3011448892 hasConcept C41008148 @default.