Matches in SemOpenAlex for { <https://semopenalex.org/work/W3011460067> ?p ?o ?g. }
- W3011460067 endingPage "114752" @default.
- W3011460067 startingPage "114752" @default.
- W3011460067 abstract "In recent years, electricity power system structures have changed to accommodate large-scale penetration of renewable energy sources and energy-saving trends. Because of these system changes, the behavior of electricity net-loads, i.e. the difference between total demand and aggregate supply of distributed variable renewable energy sources, has changed drastically. This behavior is also influenced by various other factors such as weather, economic conditions, and consumer lifestyle. Analyzing the factors that affect the dynamic characteristics of the electricity net-load enables stakeholders to construct an electricity business strategy. Conventionally, such demand analysis has been conducted by targeting a limited number of explanatory variables that have been screened according to the prior knowledge of experts. The identification of essential explanatory variables through data-centric analysis, with a focus on variables that co-occur with demand, has long been recognized as important; however, discussion has been limited because it is difficult to describe plausible statistical relationships among the many possible explanatory variables with only a limited number of historical data samples available. This study focuses on the dynamics in hourly electricity demand and approach to identify annually important variables by constructing situation-dependent models. These models are based on the dataset consisting of demand and multiple explanatory variables that co-occur in the target time slices. The powerful concept of sparse modeling is applied to handle the large number of possible explanatory variables used in the situation-dependent modeling process. In particular, this study discusses inconsistency of the selected variables when the statistical models are constructed focusing on different data subsets; when the model is trained based on a dataset focusing on a specific time period, the selected variables may be significantly different from those resulting from a dataset focusing on another time period. The authors propose to derive a limited number of annually dominant variables by enumerating suboptimal models for each situation, and by selecting, as much as possible, essential variables that are commonly and consistently used for all situations. The proposed scheme was applied to a real-world demand dataset and discussed in the context of representation errors and interpretability. The results show that the proposed method is an effective approach for representing the situation-dependent impact of variables on demand." @default.
- W3011460067 created "2020-03-23" @default.
- W3011460067 creator A5024829628 @default.
- W3011460067 creator A5029328351 @default.
- W3011460067 creator A5030073887 @default.
- W3011460067 creator A5064180569 @default.
- W3011460067 creator A5068271278 @default.
- W3011460067 date "2020-05-01" @default.
- W3011460067 modified "2023-10-09" @default.
- W3011460067 title "Sparse modeling approach for identifying the dominant factors affecting situation-dependent hourly electricity demand" @default.
- W3011460067 cites W1525104988 @default.
- W3011460067 cites W1937559008 @default.
- W3011460067 cites W2006846066 @default.
- W3011460067 cites W2015016933 @default.
- W3011460067 cites W2017337590 @default.
- W3011460067 cites W2020026289 @default.
- W3011460067 cites W2020925091 @default.
- W3011460067 cites W2042089645 @default.
- W3011460067 cites W2043836403 @default.
- W3011460067 cites W2069873194 @default.
- W3011460067 cites W2071667296 @default.
- W3011460067 cites W2075294480 @default.
- W3011460067 cites W2077562320 @default.
- W3011460067 cites W2085655972 @default.
- W3011460067 cites W2128845125 @default.
- W3011460067 cites W2135651192 @default.
- W3011460067 cites W2153841684 @default.
- W3011460067 cites W2291718757 @default.
- W3011460067 cites W2346516688 @default.
- W3011460067 cites W2415930966 @default.
- W3011460067 cites W2516939159 @default.
- W3011460067 cites W2522747841 @default.
- W3011460067 cites W2586410894 @default.
- W3011460067 cites W2597350314 @default.
- W3011460067 cites W2610886376 @default.
- W3011460067 cites W2778620504 @default.
- W3011460067 cites W2801397567 @default.
- W3011460067 cites W2801549487 @default.
- W3011460067 cites W2911964244 @default.
- W3011460067 cites W2921984248 @default.
- W3011460067 cites W2961056194 @default.
- W3011460067 cites W2999323915 @default.
- W3011460067 cites W3037000643 @default.
- W3011460067 cites W4234314512 @default.
- W3011460067 doi "https://doi.org/10.1016/j.apenergy.2020.114752" @default.
- W3011460067 hasPublicationYear "2020" @default.
- W3011460067 type Work @default.
- W3011460067 sameAs 3011460067 @default.
- W3011460067 citedByCount "8" @default.
- W3011460067 countsByYear W30114600672020 @default.
- W3011460067 countsByYear W30114600672021 @default.
- W3011460067 countsByYear W30114600672023 @default.
- W3011460067 crossrefType "journal-article" @default.
- W3011460067 hasAuthorship W3011460067A5024829628 @default.
- W3011460067 hasAuthorship W3011460067A5029328351 @default.
- W3011460067 hasAuthorship W3011460067A5030073887 @default.
- W3011460067 hasAuthorship W3011460067A5064180569 @default.
- W3011460067 hasAuthorship W3011460067A5068271278 @default.
- W3011460067 hasBestOaLocation W30114600671 @default.
- W3011460067 hasConcept C111472728 @default.
- W3011460067 hasConcept C116834253 @default.
- W3011460067 hasConcept C119599485 @default.
- W3011460067 hasConcept C119857082 @default.
- W3011460067 hasConcept C121332964 @default.
- W3011460067 hasConcept C127413603 @default.
- W3011460067 hasConcept C134306372 @default.
- W3011460067 hasConcept C134560507 @default.
- W3011460067 hasConcept C138885662 @default.
- W3011460067 hasConcept C149782125 @default.
- W3011460067 hasConcept C162324750 @default.
- W3011460067 hasConcept C163258240 @default.
- W3011460067 hasConcept C182365436 @default.
- W3011460067 hasConcept C188573790 @default.
- W3011460067 hasConcept C18903297 @default.
- W3011460067 hasConcept C206658404 @default.
- W3011460067 hasConcept C27574286 @default.
- W3011460067 hasConcept C2777402642 @default.
- W3011460067 hasConcept C2780789856 @default.
- W3011460067 hasConcept C33923547 @default.
- W3011460067 hasConcept C41008148 @default.
- W3011460067 hasConcept C62520636 @default.
- W3011460067 hasConcept C86803240 @default.
- W3011460067 hasConcept C89227174 @default.
- W3011460067 hasConceptScore W3011460067C111472728 @default.
- W3011460067 hasConceptScore W3011460067C116834253 @default.
- W3011460067 hasConceptScore W3011460067C119599485 @default.
- W3011460067 hasConceptScore W3011460067C119857082 @default.
- W3011460067 hasConceptScore W3011460067C121332964 @default.
- W3011460067 hasConceptScore W3011460067C127413603 @default.
- W3011460067 hasConceptScore W3011460067C134306372 @default.
- W3011460067 hasConceptScore W3011460067C134560507 @default.
- W3011460067 hasConceptScore W3011460067C138885662 @default.
- W3011460067 hasConceptScore W3011460067C149782125 @default.
- W3011460067 hasConceptScore W3011460067C162324750 @default.
- W3011460067 hasConceptScore W3011460067C163258240 @default.
- W3011460067 hasConceptScore W3011460067C182365436 @default.
- W3011460067 hasConceptScore W3011460067C188573790 @default.
- W3011460067 hasConceptScore W3011460067C18903297 @default.