Matches in SemOpenAlex for { <https://semopenalex.org/work/W3011520653> ?p ?o ?g. }
- W3011520653 endingPage "2053" @default.
- W3011520653 startingPage "2035" @default.
- W3011520653 abstract "Networks of protected areas are fundamental for biodiversity conservation, but many factors determine their conservation efficiency. In particular, on top of other human-driven disturbances, invasions by non-native species can cause habitat and biodiversity loss. Jointly understanding what drives patterns of plant diversity and of non-native species in protected areas is therefore a priority. We tested whether the richness and composition of native and non-native plant species within a network of protected areas follow similar patterns across spatial scales. Specifically, we addressed three questions: (a) what is the degree of congruence in species richness between native and non-native species? (b) do changes in the composition of non-native species across ecological gradients reflect a similar turnover of native species along the same gradients ? (c) what are the main environmental and human disturbance drivers controlling species richness in these two groups of species? Species richness and composition of native and non-native plant species were compared at two spatial scales: the plot scale (10 m × 10 m) and the Protected Area scale (PA). In addition, we fit Generalized Linear Models to identify the most important drivers of native and non-native species richness at each scale, focusing on environmental conditions (climate, topography) and on the main sources of human disturbance in the area (land use and roads). We found a significant positive correlation between the turnover of native and non-native species composition at both plot and PA scales, whereas their species richness was only correlated at the larger PA scale. The lack of congruence between the richness of native and non-native species at the plot scale was likely driven by differential responses to fine scale environmental factors, with non-natives favoring drier climates and milder slopes (climate and slope). In addition, more non-native species were found closer to road-ways in the reserve network. In contrast, the congruence in the richness of native and non-native species at the broader PA scale was mainly driven by the common influence of PA area, but also by similar responses of the two groups of species to climatic heterogeneity. Thus, our study highlights the strong spatial dependence of the relationship between native and non-native species richness and of their responses to environmental variation. Taken together, our results suggest that within the study region the introduction and establishment of non-native species would be more likely in warmer and dryer areas, with high native species richness at large spatial scale but intermediate levels of anthropogenic disturbances and mild slope inclinations and elevation at fine scale. Such an exhaustive understanding of the factors that influence the spread of non-native species, especially in networks of protected areas is crucial to inform conservation managers on how to control or curb non-native species." @default.
- W3011520653 created "2020-03-23" @default.
- W3011520653 creator A5013269565 @default.
- W3011520653 creator A5017531568 @default.
- W3011520653 creator A5027832690 @default.
- W3011520653 creator A5036259500 @default.
- W3011520653 creator A5044889614 @default.
- W3011520653 creator A5047877370 @default.
- W3011520653 creator A5059972174 @default.
- W3011520653 creator A5061368370 @default.
- W3011520653 date "2020-03-11" @default.
- W3011520653 modified "2023-10-10" @default.
- W3011520653 title "Contrasting patterns of native and non-native plants in a network of protected areas across spatial scales" @default.
- W3011520653 cites W1547291349 @default.
- W3011520653 cites W1581423613 @default.
- W3011520653 cites W1588506111 @default.
- W3011520653 cites W1827446605 @default.
- W3011520653 cites W1949410142 @default.
- W3011520653 cites W1951724000 @default.
- W3011520653 cites W1964964907 @default.
- W3011520653 cites W1968550804 @default.
- W3011520653 cites W1969546303 @default.
- W3011520653 cites W1974479907 @default.
- W3011520653 cites W1981968821 @default.
- W3011520653 cites W1985597874 @default.
- W3011520653 cites W1990141149 @default.
- W3011520653 cites W1993439670 @default.
- W3011520653 cites W1998025025 @default.
- W3011520653 cites W2036888943 @default.
- W3011520653 cites W2040400851 @default.
- W3011520653 cites W2043977571 @default.
- W3011520653 cites W2045065865 @default.
- W3011520653 cites W2052722856 @default.
- W3011520653 cites W2053246870 @default.
- W3011520653 cites W2057050295 @default.
- W3011520653 cites W2067597535 @default.
- W3011520653 cites W2071017459 @default.
- W3011520653 cites W2074214966 @default.
- W3011520653 cites W2074280708 @default.
- W3011520653 cites W2076349504 @default.
- W3011520653 cites W2076358935 @default.
- W3011520653 cites W2078918527 @default.
- W3011520653 cites W2086573420 @default.
- W3011520653 cites W2087438414 @default.
- W3011520653 cites W2098000995 @default.
- W3011520653 cites W2099376388 @default.
- W3011520653 cites W2104569908 @default.
- W3011520653 cites W2107731920 @default.
- W3011520653 cites W2110738330 @default.
- W3011520653 cites W2111982591 @default.
- W3011520653 cites W2112486274 @default.
- W3011520653 cites W2112681245 @default.
- W3011520653 cites W2116641741 @default.
- W3011520653 cites W2120160157 @default.
- W3011520653 cites W2124567587 @default.
- W3011520653 cites W2128397737 @default.
- W3011520653 cites W2136539381 @default.
- W3011520653 cites W2137046486 @default.
- W3011520653 cites W2137439980 @default.
- W3011520653 cites W2138077181 @default.
- W3011520653 cites W2138303671 @default.
- W3011520653 cites W2138940795 @default.
- W3011520653 cites W2140460700 @default.
- W3011520653 cites W2141296934 @default.
- W3011520653 cites W2141630032 @default.
- W3011520653 cites W2142659542 @default.
- W3011520653 cites W2143664329 @default.
- W3011520653 cites W2145265259 @default.
- W3011520653 cites W2146437164 @default.
- W3011520653 cites W2147113170 @default.
- W3011520653 cites W2154355078 @default.
- W3011520653 cites W2155726482 @default.
- W3011520653 cites W2158308537 @default.
- W3011520653 cites W2171641394 @default.
- W3011520653 cites W2214384007 @default.
- W3011520653 cites W2415321925 @default.
- W3011520653 cites W2468422509 @default.
- W3011520653 cites W2582579817 @default.
- W3011520653 cites W2606154607 @default.
- W3011520653 cites W2734903626 @default.
- W3011520653 cites W2743310005 @default.
- W3011520653 cites W2749998500 @default.
- W3011520653 cites W2883251903 @default.
- W3011520653 cites W2962760495 @default.
- W3011520653 cites W4206463323 @default.
- W3011520653 cites W4234750113 @default.
- W3011520653 doi "https://doi.org/10.1007/s10531-020-01958-y" @default.
- W3011520653 hasPublicationYear "2020" @default.
- W3011520653 type Work @default.
- W3011520653 sameAs 3011520653 @default.
- W3011520653 citedByCount "9" @default.
- W3011520653 countsByYear W30115206532020 @default.
- W3011520653 countsByYear W30115206532021 @default.
- W3011520653 countsByYear W30115206532022 @default.
- W3011520653 countsByYear W30115206532023 @default.
- W3011520653 crossrefType "journal-article" @default.
- W3011520653 hasAuthorship W3011520653A5013269565 @default.
- W3011520653 hasAuthorship W3011520653A5017531568 @default.