Matches in SemOpenAlex for { <https://semopenalex.org/work/W3011530750> ?p ?o ?g. }
- W3011530750 endingPage "1217" @default.
- W3011530750 startingPage "1207" @default.
- W3011530750 abstract "Abstract Objective To clinically validate a fully automated deep convolutional neural network (DCNN) for detection of surgically proven meniscus tears. Materials and methods One hundred consecutive patients were retrospectively included, who underwent knee MRI and knee arthroscopy in our institution. All MRI were evaluated for medial and lateral meniscus tears by two musculoskeletal radiologists independently and by DCNN. Included patients were not part of the training set of the DCNN. Surgical reports served as the standard of reference. Statistics included sensitivity, specificity, accuracy, ROC curve analysis, and kappa statistics. Results Fifty-seven percent (57/100) of patients had a tear of the medial and 24% (24/100) of the lateral meniscus, including 12% (12/100) with a tear of both menisci. For medial meniscus tear detection, sensitivity, specificity, and accuracy were for reader 1: 93%, 91%, and 92%, for reader 2: 96%, 86%, and 92%, and for the DCNN: 84%, 88%, and 86%. For lateral meniscus tear detection, sensitivity, specificity, and accuracy were for reader 1: 71%, 95%, and 89%, for reader 2: 67%, 99%, and 91%, and for the DCNN: 58%, 92%, and 84%. Sensitivity for medial meniscus tears was significantly different between reader 2 and the DCNN ( p = 0.039), and no significant differences existed for all other comparisons (all p ≥ 0.092). The AUC-ROC of the DCNN was 0.882, 0.781, and 0.961 for detection of medial, lateral, and overall meniscus tear. Inter-reader agreement was very good for the medial (kappa = 0.876) and good for the lateral meniscus (kappa = 0.741). Conclusion DCNN-based meniscus tear detection can be performed in a fully automated manner with a similar specificity but a lower sensitivity in comparison with musculoskeletal radiologists." @default.
- W3011530750 created "2020-03-23" @default.
- W3011530750 creator A5042975582 @default.
- W3011530750 creator A5044446110 @default.
- W3011530750 creator A5047485272 @default.
- W3011530750 creator A5052007977 @default.
- W3011530750 creator A5084392881 @default.
- W3011530750 date "2020-03-13" @default.
- W3011530750 modified "2023-10-10" @default.
- W3011530750 title "Deep convolutional neural network-based detection of meniscus tears: comparison with radiologists and surgery as standard of reference" @default.
- W3011530750 cites W1677182931 @default.
- W3011530750 cites W1969664171 @default.
- W3011530750 cites W1990855490 @default.
- W3011530750 cites W2005434107 @default.
- W3011530750 cites W2024056778 @default.
- W3011530750 cites W2059067586 @default.
- W3011530750 cites W2069816479 @default.
- W3011530750 cites W2097117768 @default.
- W3011530750 cites W2101063653 @default.
- W3011530750 cites W2105422216 @default.
- W3011530750 cites W2107657275 @default.
- W3011530750 cites W2113761408 @default.
- W3011530750 cites W2116177429 @default.
- W3011530750 cites W2128103668 @default.
- W3011530750 cites W2136658615 @default.
- W3011530750 cites W2164777277 @default.
- W3011530750 cites W2279879122 @default.
- W3011530750 cites W2333139014 @default.
- W3011530750 cites W2408327993 @default.
- W3011530750 cites W2410836385 @default.
- W3011530750 cites W2519218591 @default.
- W3011530750 cites W2522937400 @default.
- W3011530750 cites W2528201983 @default.
- W3011530750 cites W2562328926 @default.
- W3011530750 cites W2592765733 @default.
- W3011530750 cites W2606536242 @default.
- W3011530750 cites W2733840449 @default.
- W3011530750 cites W2737373222 @default.
- W3011530750 cites W2753390489 @default.
- W3011530750 cites W2790091880 @default.
- W3011530750 cites W2803328900 @default.
- W3011530750 cites W2885303411 @default.
- W3011530750 cites W2893693469 @default.
- W3011530750 cites W2902874468 @default.
- W3011530750 cites W2906598409 @default.
- W3011530750 cites W2928555005 @default.
- W3011530750 cites W2933603317 @default.
- W3011530750 cites W2972547942 @default.
- W3011530750 doi "https://doi.org/10.1007/s00256-020-03410-2" @default.
- W3011530750 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7300077" @default.
- W3011530750 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32405781" @default.
- W3011530750 hasPublicationYear "2020" @default.
- W3011530750 type Work @default.
- W3011530750 sameAs 3011530750 @default.
- W3011530750 citedByCount "36" @default.
- W3011530750 countsByYear W30115307502020 @default.
- W3011530750 countsByYear W30115307502021 @default.
- W3011530750 countsByYear W30115307502022 @default.
- W3011530750 countsByYear W30115307502023 @default.
- W3011530750 crossrefType "journal-article" @default.
- W3011530750 hasAuthorship W3011530750A5042975582 @default.
- W3011530750 hasAuthorship W3011530750A5044446110 @default.
- W3011530750 hasAuthorship W3011530750A5047485272 @default.
- W3011530750 hasAuthorship W3011530750A5052007977 @default.
- W3011530750 hasAuthorship W3011530750A5084392881 @default.
- W3011530750 hasBestOaLocation W30115307501 @default.
- W3011530750 hasConcept C126322002 @default.
- W3011530750 hasConcept C126838900 @default.
- W3011530750 hasConcept C141071460 @default.
- W3011530750 hasConcept C142724271 @default.
- W3011530750 hasConcept C154945302 @default.
- W3011530750 hasConcept C189178095 @default.
- W3011530750 hasConcept C204787440 @default.
- W3011530750 hasConcept C2524010 @default.
- W3011530750 hasConcept C2776164576 @default.
- W3011530750 hasConcept C2778275304 @default.
- W3011530750 hasConcept C2778724333 @default.
- W3011530750 hasConcept C2779162959 @default.
- W3011530750 hasConcept C2780423099 @default.
- W3011530750 hasConcept C2781304689 @default.
- W3011530750 hasConcept C2989005 @default.
- W3011530750 hasConcept C33923547 @default.
- W3011530750 hasConcept C41008148 @default.
- W3011530750 hasConcept C58471807 @default.
- W3011530750 hasConcept C61511704 @default.
- W3011530750 hasConcept C68312169 @default.
- W3011530750 hasConcept C71924100 @default.
- W3011530750 hasConcept C81363708 @default.
- W3011530750 hasConceptScore W3011530750C126322002 @default.
- W3011530750 hasConceptScore W3011530750C126838900 @default.
- W3011530750 hasConceptScore W3011530750C141071460 @default.
- W3011530750 hasConceptScore W3011530750C142724271 @default.
- W3011530750 hasConceptScore W3011530750C154945302 @default.
- W3011530750 hasConceptScore W3011530750C189178095 @default.
- W3011530750 hasConceptScore W3011530750C204787440 @default.
- W3011530750 hasConceptScore W3011530750C2524010 @default.
- W3011530750 hasConceptScore W3011530750C2776164576 @default.
- W3011530750 hasConceptScore W3011530750C2778275304 @default.