Matches in SemOpenAlex for { <https://semopenalex.org/work/W3011540209> ?p ?o ?g. }
- W3011540209 endingPage "e0229818" @default.
- W3011540209 startingPage "e0229818" @default.
- W3011540209 abstract "China experiences frequent landslides, and therefore there is a need for landslide susceptibility maps (LSMs) to effectively analyze and predict regional landslides. However, the traditional methods of producing an LSM are unable to account for different spatial scales, resulting in spatial imbalances. In this study, Zigui-Badong in the Three Gorges Reservoir Area was used as a case study, and data was obtained from remote sensing images, digital elevation model, geological and topographic maps, and landslide surveys. A geographic weighted regression (GWR) was applied to segment the study area into different spatial scales, with three basic principles followed when the GWR model was applied for this propose. As a result, 58 environmental factors were extracted, and 18 factors were selected as LSM factors. Three of the most important factors (channel network basic level, elevation, and distance to river) were used as segmentation factors to segment the study area into 18 prediction regions. The particle swarm optimization (PSO) algorithm was used to optimize the parameters of a support vector machine (SVM) model for each prediction region. All of the prediction regions were merged to construct a GWR-PSO-SVM coupled model and finally, an LSM of the study area was produced. To verify the effectiveness of the proposed method, the outcomes of the GWR-PSO-SVM coupled model and the PSO-SVM coupled model were compared using three evaluation methods: specific category accuracy analysis, overall prediction accuracy analysis, and area under the curve analysis. The results for the GWR-PSO-SVM coupled model for these three evaluation methods were 85.75%, 87.86%, and 0.965, respectively, while the results for the traditional PSO-SVM coupled model were 68.35%, 84.44%, and 0.944, respectively. The method proposed in this study based on a spatial scale segmentation therefore acquired good results." @default.
- W3011540209 created "2020-03-23" @default.
- W3011540209 creator A5052845830 @default.
- W3011540209 creator A5082907523 @default.
- W3011540209 date "2020-03-11" @default.
- W3011540209 modified "2023-10-17" @default.
- W3011540209 title "A landslide susceptibility map based on spatial scale segmentation: A case study at Zigui-Badong in the Three Gorges Reservoir Area, China" @default.
- W3011540209 cites W2053858205 @default.
- W3011540209 cites W2097698267 @default.
- W3011540209 cites W2124217455 @default.
- W3011540209 cites W2147555471 @default.
- W3011540209 cites W2148169128 @default.
- W3011540209 cites W2171612326 @default.
- W3011540209 cites W2287960510 @default.
- W3011540209 cites W2331149499 @default.
- W3011540209 cites W2350578059 @default.
- W3011540209 cites W2442699520 @default.
- W3011540209 cites W2570219563 @default.
- W3011540209 cites W2765825416 @default.
- W3011540209 cites W2767099365 @default.
- W3011540209 cites W2769457059 @default.
- W3011540209 cites W2799444970 @default.
- W3011540209 cites W2808860853 @default.
- W3011540209 cites W2890029039 @default.
- W3011540209 cites W2891027816 @default.
- W3011540209 cites W2898517807 @default.
- W3011540209 cites W2905708141 @default.
- W3011540209 cites W2936720877 @default.
- W3011540209 cites W2946843870 @default.
- W3011540209 cites W2957420625 @default.
- W3011540209 cites W3125965402 @default.
- W3011540209 doi "https://doi.org/10.1371/journal.pone.0229818" @default.
- W3011540209 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7065816" @default.
- W3011540209 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32160206" @default.
- W3011540209 hasPublicationYear "2020" @default.
- W3011540209 type Work @default.
- W3011540209 sameAs 3011540209 @default.
- W3011540209 citedByCount "15" @default.
- W3011540209 countsByYear W30115402092021 @default.
- W3011540209 countsByYear W30115402092022 @default.
- W3011540209 countsByYear W30115402092023 @default.
- W3011540209 crossrefType "journal-article" @default.
- W3011540209 hasAuthorship W3011540209A5052845830 @default.
- W3011540209 hasAuthorship W3011540209A5082907523 @default.
- W3011540209 hasBestOaLocation W30115402091 @default.
- W3011540209 hasConcept C105795698 @default.
- W3011540209 hasConcept C11413529 @default.
- W3011540209 hasConcept C114793014 @default.
- W3011540209 hasConcept C12267149 @default.
- W3011540209 hasConcept C124101348 @default.
- W3011540209 hasConcept C127313418 @default.
- W3011540209 hasConcept C153180895 @default.
- W3011540209 hasConcept C154945302 @default.
- W3011540209 hasConcept C181843262 @default.
- W3011540209 hasConcept C186295008 @default.
- W3011540209 hasConcept C187320778 @default.
- W3011540209 hasConcept C205649164 @default.
- W3011540209 hasConcept C2524010 @default.
- W3011540209 hasConcept C2778755073 @default.
- W3011540209 hasConcept C2910321205 @default.
- W3011540209 hasConcept C3018430610 @default.
- W3011540209 hasConcept C33923547 @default.
- W3011540209 hasConcept C37054046 @default.
- W3011540209 hasConcept C41008148 @default.
- W3011540209 hasConcept C58640448 @default.
- W3011540209 hasConcept C62649853 @default.
- W3011540209 hasConcept C85617194 @default.
- W3011540209 hasConcept C89600930 @default.
- W3011540209 hasConceptScore W3011540209C105795698 @default.
- W3011540209 hasConceptScore W3011540209C11413529 @default.
- W3011540209 hasConceptScore W3011540209C114793014 @default.
- W3011540209 hasConceptScore W3011540209C12267149 @default.
- W3011540209 hasConceptScore W3011540209C124101348 @default.
- W3011540209 hasConceptScore W3011540209C127313418 @default.
- W3011540209 hasConceptScore W3011540209C153180895 @default.
- W3011540209 hasConceptScore W3011540209C154945302 @default.
- W3011540209 hasConceptScore W3011540209C181843262 @default.
- W3011540209 hasConceptScore W3011540209C186295008 @default.
- W3011540209 hasConceptScore W3011540209C187320778 @default.
- W3011540209 hasConceptScore W3011540209C205649164 @default.
- W3011540209 hasConceptScore W3011540209C2524010 @default.
- W3011540209 hasConceptScore W3011540209C2778755073 @default.
- W3011540209 hasConceptScore W3011540209C2910321205 @default.
- W3011540209 hasConceptScore W3011540209C3018430610 @default.
- W3011540209 hasConceptScore W3011540209C33923547 @default.
- W3011540209 hasConceptScore W3011540209C37054046 @default.
- W3011540209 hasConceptScore W3011540209C41008148 @default.
- W3011540209 hasConceptScore W3011540209C58640448 @default.
- W3011540209 hasConceptScore W3011540209C62649853 @default.
- W3011540209 hasConceptScore W3011540209C85617194 @default.
- W3011540209 hasConceptScore W3011540209C89600930 @default.
- W3011540209 hasFunder F4320313620 @default.
- W3011540209 hasFunder F4320335581 @default.
- W3011540209 hasIssue "3" @default.
- W3011540209 hasLocation W30115402091 @default.
- W3011540209 hasLocation W30115402092 @default.
- W3011540209 hasLocation W30115402093 @default.
- W3011540209 hasLocation W30115402094 @default.