Matches in SemOpenAlex for { <https://semopenalex.org/work/W3011562006> ?p ?o ?g. }
Showing items 1 to 73 of
73
with 100 items per page.
- W3011562006 abstract "PURPOSE: The iKnife is a new surgical tool designed to aid in tumor resection procedures by providing enriched chemical feedback about the tumor resection cavity from electrosurgical vapors. We build and compare machine learning classifiers that are capable of distinguishing primary cancer from surrounding tissue at different stages of tumor progression. In developing our classification framework, we implement feature reduction and recognition tools that will assist in the translation of xenograft studies to clinical application and compare these tools to standard linear methods that have been previously demonstrated. METHODS: Two cohorts (n=6 each) of 12 week old female immunocompromised (Rag2−/−;Il2rg−/−) mice were injected with the same human breast adenocarcinoma (MDA-MB-231) cell line. At 4 and 6 weeks after cell injection, mice in each cohort were respectively euthanized, followed by iKnife burns performed on tumors and tissues prior to sample collection for future studies. A feature reduction technique that uses a neural network is compared to traditional linear analysis. For each method, we fit a classifier to distinguish primary cancer from surrounding tissue. RESULTS: Both classifiers can distinguish primary cancer from metastasis and surrounding tissue. The classifier that uses a neural network achieves an accuracy of 96.8% and the classifier without the neural network achieves an accuracy of 96%. CONCLUSIONS: The performance of these classifiers indicate that this device has the potential to offer real-time, intraoperative classification of tissue. This technology may be used to assist in intraoperative margin detection and inform surgical decisions to offer a better standard of care for cancer patients." @default.
- W3011562006 created "2020-03-23" @default.
- W3011562006 creator A5002749573 @default.
- W3011562006 creator A5027063944 @default.
- W3011562006 creator A5034140058 @default.
- W3011562006 creator A5038634249 @default.
- W3011562006 creator A5040401197 @default.
- W3011562006 creator A5041571660 @default.
- W3011562006 creator A5046717505 @default.
- W3011562006 creator A5059498497 @default.
- W3011562006 creator A5064600090 @default.
- W3011562006 creator A5077476708 @default.
- W3011562006 creator A5084405281 @default.
- W3011562006 creator A5084753910 @default.
- W3011562006 date "2020-03-16" @default.
- W3011562006 modified "2023-10-16" @default.
- W3011562006 title "Classification of tumor signatures from electrosurgical vapors using mass spectrometry and machine learning: a feasibility study" @default.
- W3011562006 cites W2116731262 @default.
- W3011562006 cites W2139939613 @default.
- W3011562006 cites W2151843619 @default.
- W3011562006 cites W2494122440 @default.
- W3011562006 cites W2588704521 @default.
- W3011562006 cites W2617752143 @default.
- W3011562006 cites W2734883404 @default.
- W3011562006 doi "https://doi.org/10.1117/12.2549343" @default.
- W3011562006 hasPublicationYear "2020" @default.
- W3011562006 type Work @default.
- W3011562006 sameAs 3011562006 @default.
- W3011562006 citedByCount "0" @default.
- W3011562006 crossrefType "proceedings-article" @default.
- W3011562006 hasAuthorship W3011562006A5002749573 @default.
- W3011562006 hasAuthorship W3011562006A5027063944 @default.
- W3011562006 hasAuthorship W3011562006A5034140058 @default.
- W3011562006 hasAuthorship W3011562006A5038634249 @default.
- W3011562006 hasAuthorship W3011562006A5040401197 @default.
- W3011562006 hasAuthorship W3011562006A5041571660 @default.
- W3011562006 hasAuthorship W3011562006A5046717505 @default.
- W3011562006 hasAuthorship W3011562006A5059498497 @default.
- W3011562006 hasAuthorship W3011562006A5064600090 @default.
- W3011562006 hasAuthorship W3011562006A5077476708 @default.
- W3011562006 hasAuthorship W3011562006A5084405281 @default.
- W3011562006 hasAuthorship W3011562006A5084753910 @default.
- W3011562006 hasConcept C119857082 @default.
- W3011562006 hasConcept C12267149 @default.
- W3011562006 hasConcept C153180895 @default.
- W3011562006 hasConcept C154945302 @default.
- W3011562006 hasConcept C41008148 @default.
- W3011562006 hasConcept C50644808 @default.
- W3011562006 hasConcept C95623464 @default.
- W3011562006 hasConceptScore W3011562006C119857082 @default.
- W3011562006 hasConceptScore W3011562006C12267149 @default.
- W3011562006 hasConceptScore W3011562006C153180895 @default.
- W3011562006 hasConceptScore W3011562006C154945302 @default.
- W3011562006 hasConceptScore W3011562006C41008148 @default.
- W3011562006 hasConceptScore W3011562006C50644808 @default.
- W3011562006 hasConceptScore W3011562006C95623464 @default.
- W3011562006 hasLocation W30115620061 @default.
- W3011562006 hasOpenAccess W3011562006 @default.
- W3011562006 hasPrimaryLocation W30115620061 @default.
- W3011562006 hasRelatedWork W1086253 @default.
- W3011562006 hasRelatedWork W1678066 @default.
- W3011562006 hasRelatedWork W4947539 @default.
- W3011562006 hasRelatedWork W6680660 @default.
- W3011562006 hasRelatedWork W6717794 @default.
- W3011562006 hasRelatedWork W728297 @default.
- W3011562006 hasRelatedWork W7655147 @default.
- W3011562006 hasRelatedWork W8197146 @default.
- W3011562006 hasRelatedWork W8198582 @default.
- W3011562006 hasRelatedWork W2925925 @default.
- W3011562006 isParatext "false" @default.
- W3011562006 isRetracted "false" @default.
- W3011562006 magId "3011562006" @default.
- W3011562006 workType "article" @default.