Matches in SemOpenAlex for { <https://semopenalex.org/work/W3011576034> ?p ?o ?g. }
- W3011576034 endingPage "267" @default.
- W3011576034 startingPage "259" @default.
- W3011576034 abstract "Training of the convolution neural network (CNN) is a problem of global optimisation. This study proposed a hybrid modified particle swarm optimisation (MPSO) and conjugate gradient (CG) algorithm for efficient training of CNN. The training involves MPSO–CG to avoid trapping in local minima. Particularly, improvements in the MPSO by introducing a novel approach for control parameters, improved parameters updating criteria, a novel parameter in the velocity update equation, and fusion of the CG allows handling the issues in training CNN. In this study, the authors validate the proposed MPSO algorithm on three benchmark mathematical test functions and also compared with three different variants of the baseline particle swarm optimisation algorithm. Furthermore, the performance of the proposed MPSO–CG is also compared with other training algorithms focusing on the analysis of computational cost, convergence, and accuracy based on a standard problem specific to classification applications on CIFAR-10 dataset and face and skin detection dataset." @default.
- W3011576034 created "2020-03-23" @default.
- W3011576034 creator A5020864189 @default.
- W3011576034 creator A5032222187 @default.
- W3011576034 creator A5035979541 @default.
- W3011576034 creator A5040007583 @default.
- W3011576034 creator A5047996342 @default.
- W3011576034 creator A5048394282 @default.
- W3011576034 creator A5067438462 @default.
- W3011576034 creator A5086533220 @default.
- W3011576034 date "2020-06-30" @default.
- W3011576034 modified "2023-10-10" @default.
- W3011576034 title "Optimisation‐based training of evolutionary convolution neural network for visual classification applications" @default.
- W3011576034 cites W1849277567 @default.
- W3011576034 cites W1951319388 @default.
- W3011576034 cites W1968442252 @default.
- W3011576034 cites W1980977406 @default.
- W3011576034 cites W1983092131 @default.
- W3011576034 cites W2012231377 @default.
- W3011576034 cites W2071051349 @default.
- W3011576034 cites W2073105997 @default.
- W3011576034 cites W2091987367 @default.
- W3011576034 cites W2097018403 @default.
- W3011576034 cites W2112796928 @default.
- W3011576034 cites W2123066915 @default.
- W3011576034 cites W2156798906 @default.
- W3011576034 cites W2158242120 @default.
- W3011576034 cites W2518029102 @default.
- W3011576034 cites W2546302380 @default.
- W3011576034 cites W2575354312 @default.
- W3011576034 cites W2731488294 @default.
- W3011576034 cites W2743106775 @default.
- W3011576034 cites W2744745684 @default.
- W3011576034 cites W2751083878 @default.
- W3011576034 cites W2781877551 @default.
- W3011576034 cites W2786572054 @default.
- W3011576034 cites W2800732852 @default.
- W3011576034 cites W2802087177 @default.
- W3011576034 cites W2894849172 @default.
- W3011576034 cites W2899496144 @default.
- W3011576034 cites W2904458126 @default.
- W3011576034 cites W2945659937 @default.
- W3011576034 cites W2945810946 @default.
- W3011576034 cites W2953323514 @default.
- W3011576034 cites W2962813473 @default.
- W3011576034 cites W2972252050 @default.
- W3011576034 cites W3101998545 @default.
- W3011576034 cites W3102431071 @default.
- W3011576034 cites W4285617990 @default.
- W3011576034 doi "https://doi.org/10.1049/iet-cvi.2019.0506" @default.
- W3011576034 hasPublicationYear "2020" @default.
- W3011576034 type Work @default.
- W3011576034 sameAs 3011576034 @default.
- W3011576034 citedByCount "15" @default.
- W3011576034 countsByYear W30115760342020 @default.
- W3011576034 countsByYear W30115760342021 @default.
- W3011576034 countsByYear W30115760342022 @default.
- W3011576034 countsByYear W30115760342023 @default.
- W3011576034 crossrefType "journal-article" @default.
- W3011576034 hasAuthorship W3011576034A5020864189 @default.
- W3011576034 hasAuthorship W3011576034A5032222187 @default.
- W3011576034 hasAuthorship W3011576034A5035979541 @default.
- W3011576034 hasAuthorship W3011576034A5040007583 @default.
- W3011576034 hasAuthorship W3011576034A5047996342 @default.
- W3011576034 hasAuthorship W3011576034A5048394282 @default.
- W3011576034 hasAuthorship W3011576034A5067438462 @default.
- W3011576034 hasAuthorship W3011576034A5086533220 @default.
- W3011576034 hasBestOaLocation W30115760341 @default.
- W3011576034 hasConcept C11413529 @default.
- W3011576034 hasConcept C119857082 @default.
- W3011576034 hasConcept C13280743 @default.
- W3011576034 hasConcept C134306372 @default.
- W3011576034 hasConcept C153180895 @default.
- W3011576034 hasConcept C154945302 @default.
- W3011576034 hasConcept C162324750 @default.
- W3011576034 hasConcept C185798385 @default.
- W3011576034 hasConcept C186633575 @default.
- W3011576034 hasConcept C205649164 @default.
- W3011576034 hasConcept C2777303404 @default.
- W3011576034 hasConcept C33923547 @default.
- W3011576034 hasConcept C41008148 @default.
- W3011576034 hasConcept C45347329 @default.
- W3011576034 hasConcept C50522688 @default.
- W3011576034 hasConcept C50644808 @default.
- W3011576034 hasConcept C81184566 @default.
- W3011576034 hasConcept C81363708 @default.
- W3011576034 hasConcept C85617194 @default.
- W3011576034 hasConceptScore W3011576034C11413529 @default.
- W3011576034 hasConceptScore W3011576034C119857082 @default.
- W3011576034 hasConceptScore W3011576034C13280743 @default.
- W3011576034 hasConceptScore W3011576034C134306372 @default.
- W3011576034 hasConceptScore W3011576034C153180895 @default.
- W3011576034 hasConceptScore W3011576034C154945302 @default.
- W3011576034 hasConceptScore W3011576034C162324750 @default.
- W3011576034 hasConceptScore W3011576034C185798385 @default.
- W3011576034 hasConceptScore W3011576034C186633575 @default.
- W3011576034 hasConceptScore W3011576034C205649164 @default.
- W3011576034 hasConceptScore W3011576034C2777303404 @default.