Matches in SemOpenAlex for { <https://semopenalex.org/work/W3011596499> ?p ?o ?g. }
Showing items 1 to 95 of
95
with 100 items per page.
- W3011596499 abstract "4D thoracic images constructed from free-breathing 2D slice acquisitions based on dynamic magnetic resonance imaging (dMRI) provide clinicians the capability of examining the dynamic function of the left and right lungs, left and right hemi-diaphragms, and left and right chest wall separately for thoracic insufficiency syndrome (TIS) treatment [1]. There are two shortcomings of the existing 4D construction methods [2]: a) the respiratory phase corresponding to end expiration (EE) and end inspiration (EI) need to be manually identified in the dMRI sequence; b) abnormal breathing signals due to non-tidal breathing cannot be detected automatically which affects the construction process. Since the typical 2D dynamic MRI acquisition contains ~3000 slices per patient, handling these tasks manually is very labor intensive. In this study, we propose a deep-learning-based framework for addressing both problems via convolutional neural networks (CNNs) [3] and Long Short-Term Memory (LSTM) [4] models. A CNN is used to extract the motion characteristics from the respiratory dMRI sequences to automatically identify contiguous sequences of slices representing exhalation and inhalation processes. EE and EI annotations are subsequently completed by comparing the changes in the direction of motion of the diaphragm. A LSTM network is used for detecting abnormal respiratory signals by exploiting the non-uniform motion feature sequence of abnormal breathing motions. Experimental results show the mean error of labeling EE and EI is ~0.3 dMRI time point unit (much less than one time point). The accuracy of abnormal cycle detection reaches 80.0%. The proposed approach achieves results highly comparable to manual labeling in accuracy but with close to full automation of the whole process. The framework proposed here can be readily adapted to other modalities and dynamic imaging applications." @default.
- W3011596499 created "2020-03-23" @default.
- W3011596499 creator A5008484635 @default.
- W3011596499 creator A5011231391 @default.
- W3011596499 creator A5017467779 @default.
- W3011596499 creator A5018154034 @default.
- W3011596499 creator A5026804587 @default.
- W3011596499 creator A5033937011 @default.
- W3011596499 creator A5065713856 @default.
- W3011596499 creator A5071253247 @default.
- W3011596499 creator A5080030813 @default.
- W3011596499 creator A5082511067 @default.
- W3011596499 date "2020-03-16" @default.
- W3011596499 modified "2023-09-27" @default.
- W3011596499 title "Automatic labeling of respiratory phases and detection of abnormal respiratory signals in free-breathing thoracic dynamic MR image acquisitions based on deep learning" @default.
- W3011596499 cites W2107454038 @default.
- W3011596499 cites W2136848157 @default.
- W3011596499 cites W2153980124 @default.
- W3011596499 cites W2514359002 @default.
- W3011596499 doi "https://doi.org/10.1117/12.2549983" @default.
- W3011596499 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7550858" @default.
- W3011596499 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33060886" @default.
- W3011596499 hasPublicationYear "2020" @default.
- W3011596499 type Work @default.
- W3011596499 sameAs 3011596499 @default.
- W3011596499 citedByCount "2" @default.
- W3011596499 countsByYear W30115964992020 @default.
- W3011596499 countsByYear W30115964992023 @default.
- W3011596499 crossrefType "proceedings-article" @default.
- W3011596499 hasAuthorship W3011596499A5008484635 @default.
- W3011596499 hasAuthorship W3011596499A5011231391 @default.
- W3011596499 hasAuthorship W3011596499A5017467779 @default.
- W3011596499 hasAuthorship W3011596499A5018154034 @default.
- W3011596499 hasAuthorship W3011596499A5026804587 @default.
- W3011596499 hasAuthorship W3011596499A5033937011 @default.
- W3011596499 hasAuthorship W3011596499A5065713856 @default.
- W3011596499 hasAuthorship W3011596499A5071253247 @default.
- W3011596499 hasAuthorship W3011596499A5080030813 @default.
- W3011596499 hasAuthorship W3011596499A5082511067 @default.
- W3011596499 hasBestOaLocation W30115964992 @default.
- W3011596499 hasConcept C105702510 @default.
- W3011596499 hasConcept C108583219 @default.
- W3011596499 hasConcept C126838900 @default.
- W3011596499 hasConcept C138885662 @default.
- W3011596499 hasConcept C142724271 @default.
- W3011596499 hasConcept C143409427 @default.
- W3011596499 hasConcept C153180895 @default.
- W3011596499 hasConcept C154945302 @default.
- W3011596499 hasConcept C20463939 @default.
- W3011596499 hasConcept C204787440 @default.
- W3011596499 hasConcept C2776401178 @default.
- W3011596499 hasConcept C31972630 @default.
- W3011596499 hasConcept C39300077 @default.
- W3011596499 hasConcept C41008148 @default.
- W3011596499 hasConcept C41727105 @default.
- W3011596499 hasConcept C41895202 @default.
- W3011596499 hasConcept C71924100 @default.
- W3011596499 hasConcept C81363708 @default.
- W3011596499 hasConceptScore W3011596499C105702510 @default.
- W3011596499 hasConceptScore W3011596499C108583219 @default.
- W3011596499 hasConceptScore W3011596499C126838900 @default.
- W3011596499 hasConceptScore W3011596499C138885662 @default.
- W3011596499 hasConceptScore W3011596499C142724271 @default.
- W3011596499 hasConceptScore W3011596499C143409427 @default.
- W3011596499 hasConceptScore W3011596499C153180895 @default.
- W3011596499 hasConceptScore W3011596499C154945302 @default.
- W3011596499 hasConceptScore W3011596499C20463939 @default.
- W3011596499 hasConceptScore W3011596499C204787440 @default.
- W3011596499 hasConceptScore W3011596499C2776401178 @default.
- W3011596499 hasConceptScore W3011596499C31972630 @default.
- W3011596499 hasConceptScore W3011596499C39300077 @default.
- W3011596499 hasConceptScore W3011596499C41008148 @default.
- W3011596499 hasConceptScore W3011596499C41727105 @default.
- W3011596499 hasConceptScore W3011596499C41895202 @default.
- W3011596499 hasConceptScore W3011596499C71924100 @default.
- W3011596499 hasConceptScore W3011596499C81363708 @default.
- W3011596499 hasLocation W30115964991 @default.
- W3011596499 hasLocation W30115964992 @default.
- W3011596499 hasLocation W30115964993 @default.
- W3011596499 hasOpenAccess W3011596499 @default.
- W3011596499 hasPrimaryLocation W30115964991 @default.
- W3011596499 hasRelatedWork W111064026 @default.
- W3011596499 hasRelatedWork W2018455018 @default.
- W3011596499 hasRelatedWork W2049150782 @default.
- W3011596499 hasRelatedWork W2067231564 @default.
- W3011596499 hasRelatedWork W2095122512 @default.
- W3011596499 hasRelatedWork W2317539839 @default.
- W3011596499 hasRelatedWork W2349256625 @default.
- W3011596499 hasRelatedWork W2422219328 @default.
- W3011596499 hasRelatedWork W2946910984 @default.
- W3011596499 hasRelatedWork W4283216129 @default.
- W3011596499 isParatext "false" @default.
- W3011596499 isRetracted "false" @default.
- W3011596499 magId "3011596499" @default.
- W3011596499 workType "article" @default.