Matches in SemOpenAlex for { <https://semopenalex.org/work/W3011645114> ?p ?o ?g. }
- W3011645114 endingPage "6137" @default.
- W3011645114 startingPage "6124" @default.
- W3011645114 abstract "Convolutional neural networks (CNNs) are of great interest and have demonstrated remarkable performance in hyperspectral images (HSIs) classification. However, due to the current configuration of the convolution layers with a fixed kernel shape, regular CNNs are inherently limited in modeling the diverse land-cover structures, particularly in the cross-classes edge regions, where irregular class boundaries would lead to high classification errors. To address this issue, we propose a content-guided CNN (CGCNN) for HSI classification. Compared with the shape-fixed kernel in the traditional CNN, the proposed content-guided convolution adaptively adjusts its kernel shape according to the spatial distribution of land covers. The content pattern is reflected by a latent guide map automatically learned from HSI. Such content-adaptive kernel with CGCNN could suppress the irregularity and unexpected features in class boundaries and, thus, improve the feature learning in cross-classes regions. Based on the content-guided convolution, a novel guided feature extraction unit (GFEU) is constructed for spectral-spatial feature learning of HSI. Finally, the CGCNN classification framework is established by stacking multiple GFEUs with dense connection, which is helpful for mitigating the gradient vanishing and increasing the robustness to overfitting. Extensive experiments on several HSIs demonstrate that the proposed approach possesses great details' preserving ability and its performance outperforms other state-of-the-art methods." @default.
- W3011645114 created "2020-03-23" @default.
- W3011645114 creator A5020302879 @default.
- W3011645114 creator A5024727500 @default.
- W3011645114 creator A5047379149 @default.
- W3011645114 creator A5063646463 @default.
- W3011645114 date "2020-09-01" @default.
- W3011645114 modified "2023-10-10" @default.
- W3011645114 title "Content-Guided Convolutional Neural Network for Hyperspectral Image Classification" @default.
- W3011645114 cites W1498436455 @default.
- W3011645114 cites W1521436688 @default.
- W3011645114 cites W1966580635 @default.
- W3011645114 cites W2017212187 @default.
- W3011645114 cites W2021006603 @default.
- W3011645114 cites W2029316659 @default.
- W3011645114 cites W2043665634 @default.
- W3011645114 cites W2062964394 @default.
- W3011645114 cites W2063385051 @default.
- W3011645114 cites W2077792904 @default.
- W3011645114 cites W2082874195 @default.
- W3011645114 cites W2084818612 @default.
- W3011645114 cites W2089372326 @default.
- W3011645114 cites W2090424610 @default.
- W3011645114 cites W2097117768 @default.
- W3011645114 cites W2131725398 @default.
- W3011645114 cites W2136251662 @default.
- W3011645114 cites W2162698522 @default.
- W3011645114 cites W2194775991 @default.
- W3011645114 cites W2312493675 @default.
- W3011645114 cites W2323917763 @default.
- W3011645114 cites W2344173806 @default.
- W3011645114 cites W2500751094 @default.
- W3011645114 cites W2531409750 @default.
- W3011645114 cites W2546942002 @default.
- W3011645114 cites W2548791488 @default.
- W3011645114 cites W2555840851 @default.
- W3011645114 cites W2572303978 @default.
- W3011645114 cites W2577238056 @default.
- W3011645114 cites W2583142700 @default.
- W3011645114 cites W2601564443 @default.
- W3011645114 cites W2603834682 @default.
- W3011645114 cites W2614326984 @default.
- W3011645114 cites W2764276316 @default.
- W3011645114 cites W2822065499 @default.
- W3011645114 cites W2852622981 @default.
- W3011645114 cites W2884654146 @default.
- W3011645114 cites W2900378603 @default.
- W3011645114 cites W2914331134 @default.
- W3011645114 cites W2926938504 @default.
- W3011645114 cites W2944248482 @default.
- W3011645114 cites W2963446712 @default.
- W3011645114 cites W3104795559 @default.
- W3011645114 cites W4240485910 @default.
- W3011645114 doi "https://doi.org/10.1109/tgrs.2020.2974134" @default.
- W3011645114 hasPublicationYear "2020" @default.
- W3011645114 type Work @default.
- W3011645114 sameAs 3011645114 @default.
- W3011645114 citedByCount "28" @default.
- W3011645114 countsByYear W30116451142020 @default.
- W3011645114 countsByYear W30116451142021 @default.
- W3011645114 countsByYear W30116451142022 @default.
- W3011645114 countsByYear W30116451142023 @default.
- W3011645114 crossrefType "journal-article" @default.
- W3011645114 hasAuthorship W3011645114A5020302879 @default.
- W3011645114 hasAuthorship W3011645114A5024727500 @default.
- W3011645114 hasAuthorship W3011645114A5047379149 @default.
- W3011645114 hasAuthorship W3011645114A5063646463 @default.
- W3011645114 hasConcept C104317684 @default.
- W3011645114 hasConcept C114614502 @default.
- W3011645114 hasConcept C115961682 @default.
- W3011645114 hasConcept C138885662 @default.
- W3011645114 hasConcept C153180895 @default.
- W3011645114 hasConcept C154945302 @default.
- W3011645114 hasConcept C159078339 @default.
- W3011645114 hasConcept C185592680 @default.
- W3011645114 hasConcept C22019652 @default.
- W3011645114 hasConcept C2776401178 @default.
- W3011645114 hasConcept C33923547 @default.
- W3011645114 hasConcept C41008148 @default.
- W3011645114 hasConcept C41895202 @default.
- W3011645114 hasConcept C45347329 @default.
- W3011645114 hasConcept C50644808 @default.
- W3011645114 hasConcept C52622490 @default.
- W3011645114 hasConcept C55493867 @default.
- W3011645114 hasConcept C63479239 @default.
- W3011645114 hasConcept C74193536 @default.
- W3011645114 hasConcept C75294576 @default.
- W3011645114 hasConcept C81363708 @default.
- W3011645114 hasConceptScore W3011645114C104317684 @default.
- W3011645114 hasConceptScore W3011645114C114614502 @default.
- W3011645114 hasConceptScore W3011645114C115961682 @default.
- W3011645114 hasConceptScore W3011645114C138885662 @default.
- W3011645114 hasConceptScore W3011645114C153180895 @default.
- W3011645114 hasConceptScore W3011645114C154945302 @default.
- W3011645114 hasConceptScore W3011645114C159078339 @default.
- W3011645114 hasConceptScore W3011645114C185592680 @default.
- W3011645114 hasConceptScore W3011645114C22019652 @default.
- W3011645114 hasConceptScore W3011645114C2776401178 @default.