Matches in SemOpenAlex for { <https://semopenalex.org/work/W3011647582> ?p ?o ?g. }
- W3011647582 endingPage "2003" @default.
- W3011647582 startingPage "1990" @default.
- W3011647582 abstract "We propose an algorithm that exploits the benefits of sparse filtering and directional clustering when estimating under-determined mixing matrix from mixtures of sufficiently sparse sources. To express the direction of each sample by only a few vectors in which one vector is more dominant than the remaining ones, we propose to minimize the power mean of the magnitude-squared cosine distances between the estimated mixing matrix and the data. For the special case of estimating determined mixing matrix, we derive a stability condition for methods based on the magnitude-squared cosine metric. Our stability condition shows that the proposed approach, K-hyperlines, and sparse filtering can recover the invertible mixing matrix when the sources are i.i.d. super-Gaussian. Simulations using both synthetic data and recorded speech mixtures show that the proposed algorithm outperforms existing algorithms with lower computational complexity." @default.
- W3011647582 created "2020-03-23" @default.
- W3011647582 creator A5010202250 @default.
- W3011647582 creator A5012145345 @default.
- W3011647582 creator A5022105321 @default.
- W3011647582 date "2020-01-01" @default.
- W3011647582 modified "2023-09-23" @default.
- W3011647582 title "Directional Sparse Filtering for Blind Estimation of Under-Determined Complex-Valued Mixing Matrices" @default.
- W3011647582 cites W1500379785 @default.
- W3011647582 cites W1524553959 @default.
- W3011647582 cites W1571258695 @default.
- W3011647582 cites W1580211712 @default.
- W3011647582 cites W1625636363 @default.
- W3011647582 cites W167162132 @default.
- W3011647582 cites W1876052200 @default.
- W3011647582 cites W1944156528 @default.
- W3011647582 cites W1976917750 @default.
- W3011647582 cites W1987906574 @default.
- W3011647582 cites W1998874027 @default.
- W3011647582 cites W2007715285 @default.
- W3011647582 cites W2009984963 @default.
- W3011647582 cites W2027884847 @default.
- W3011647582 cites W2031583051 @default.
- W3011647582 cites W2035128299 @default.
- W3011647582 cites W2038237443 @default.
- W3011647582 cites W2038506683 @default.
- W3011647582 cites W2045512849 @default.
- W3011647582 cites W2051434435 @default.
- W3011647582 cites W2053742104 @default.
- W3011647582 cites W2058693698 @default.
- W3011647582 cites W2064191652 @default.
- W3011647582 cites W2066676198 @default.
- W3011647582 cites W2072538398 @default.
- W3011647582 cites W2076198712 @default.
- W3011647582 cites W2080829915 @default.
- W3011647582 cites W2092989792 @default.
- W3011647582 cites W2108746992 @default.
- W3011647582 cites W2111136894 @default.
- W3011647582 cites W2127737934 @default.
- W3011647582 cites W2127851351 @default.
- W3011647582 cites W2130780554 @default.
- W3011647582 cites W2137335629 @default.
- W3011647582 cites W2140638323 @default.
- W3011647582 cites W2141224535 @default.
- W3011647582 cites W2156529323 @default.
- W3011647582 cites W2160547390 @default.
- W3011647582 cites W2172097070 @default.
- W3011647582 cites W2328604275 @default.
- W3011647582 cites W2402160635 @default.
- W3011647582 cites W2408321390 @default.
- W3011647582 cites W2516001803 @default.
- W3011647582 cites W2563666542 @default.
- W3011647582 cites W2568308529 @default.
- W3011647582 cites W2600855590 @default.
- W3011647582 cites W2916583660 @default.
- W3011647582 cites W3103960010 @default.
- W3011647582 cites W4242259102 @default.
- W3011647582 cites W79994716 @default.
- W3011647582 cites W87112183 @default.
- W3011647582 doi "https://doi.org/10.1109/tsp.2020.2979550" @default.
- W3011647582 hasPublicationYear "2020" @default.
- W3011647582 type Work @default.
- W3011647582 sameAs 3011647582 @default.
- W3011647582 citedByCount "6" @default.
- W3011647582 countsByYear W30116475822021 @default.
- W3011647582 countsByYear W30116475822022 @default.
- W3011647582 countsByYear W30116475822023 @default.
- W3011647582 crossrefType "journal-article" @default.
- W3011647582 hasAuthorship W3011647582A5010202250 @default.
- W3011647582 hasAuthorship W3011647582A5012145345 @default.
- W3011647582 hasAuthorship W3011647582A5022105321 @default.
- W3011647582 hasBestOaLocation W30116475822 @default.
- W3011647582 hasConcept C105795698 @default.
- W3011647582 hasConcept C106487976 @default.
- W3011647582 hasConcept C112972136 @default.
- W3011647582 hasConcept C11413529 @default.
- W3011647582 hasConcept C119857082 @default.
- W3011647582 hasConcept C120317606 @default.
- W3011647582 hasConcept C121332964 @default.
- W3011647582 hasConcept C127162648 @default.
- W3011647582 hasConcept C138777275 @default.
- W3011647582 hasConcept C153180895 @default.
- W3011647582 hasConcept C154945302 @default.
- W3011647582 hasConcept C159985019 @default.
- W3011647582 hasConcept C162324750 @default.
- W3011647582 hasConcept C163716315 @default.
- W3011647582 hasConcept C176217482 @default.
- W3011647582 hasConcept C179799912 @default.
- W3011647582 hasConcept C192562407 @default.
- W3011647582 hasConcept C202444582 @default.
- W3011647582 hasConcept C21547014 @default.
- W3011647582 hasConcept C31258907 @default.
- W3011647582 hasConcept C33923547 @default.
- W3011647582 hasConcept C41008148 @default.
- W3011647582 hasConcept C56372850 @default.
- W3011647582 hasConcept C62520636 @default.
- W3011647582 hasConcept C73555534 @default.
- W3011647582 hasConcept C96442724 @default.