Matches in SemOpenAlex for { <https://semopenalex.org/work/W3011699162> ?p ?o ?g. }
Showing items 1 to 91 of
91
with 100 items per page.
- W3011699162 endingPage "458" @default.
- W3011699162 startingPage "458" @default.
- W3011699162 abstract "Symmetries play very important roles in the dynamics of electrical systems. The relevant electronic circuits with fault diagnostics, including the optimized neural network algorithm model, are designed on the basis of symmetry principles. In order to improve the efficiency of the circuit pressure test, a circuit pressure function equivalent compression test method based on the parallel neural network algorithm is proposed. For the implementation stage of the circuit pressure test, the improved modified node algorithm (MNA) is used to build an optimization model, and the circuit network is converted into an ordinary differential equation for the circuit pressure function equivalent compression test. The test aims to minimize flux. Then, backpropagation (BP) neural network algorithm data fusion is introduced to optimize the minimum flux model of the cyclic pressure functional equivalent compression test. Finally, a simulation experiment is carried out to verify the effectiveness of the algorithm in the accuracy and efficiency of the pressure test. The results show that the improved BP neural network improves the data fusion accuracy and shortens the sample training time; compared with the uncompressed algorithm, the running time of the proposed algorithm is greatly reduced and the execution efficiency is high; compared with the vascular pressure test method, there is no significant difference in the convergence accuracy and it is at a level of 10−5. Since the parallel computing problem is not considered in either of the two-pulse tube pressure test methods, the convergence time of the algorithm increases exponentially with the increase in the number of parallel threads. However, the algorithm in this research considers the problem of parallel execution and uses a quad-core processor, with no significant change in computing time and high computing efficiency. Therefore, BP neural network data fusion can be used for the fault diagnosis of electronic circuits, with a high operating efficiency and good development prospects." @default.
- W3011699162 created "2020-03-23" @default.
- W3011699162 creator A5029607765 @default.
- W3011699162 date "2020-03-13" @default.
- W3011699162 modified "2023-10-01" @default.
- W3011699162 title "The Analysis of Electronic Circuit Fault Diagnosis Based on Neural Network Data Fusion Algorithm" @default.
- W3011699162 cites W1657059030 @default.
- W3011699162 cites W1974861955 @default.
- W3011699162 cites W2031114368 @default.
- W3011699162 cites W2134481316 @default.
- W3011699162 cites W2467692682 @default.
- W3011699162 cites W2541477623 @default.
- W3011699162 cites W2549351519 @default.
- W3011699162 cites W2620107333 @default.
- W3011699162 cites W2789290713 @default.
- W3011699162 cites W2792912189 @default.
- W3011699162 cites W2795765414 @default.
- W3011699162 cites W2803142415 @default.
- W3011699162 cites W2803870155 @default.
- W3011699162 cites W2888394219 @default.
- W3011699162 cites W2893423577 @default.
- W3011699162 cites W2944477036 @default.
- W3011699162 doi "https://doi.org/10.3390/sym12030458" @default.
- W3011699162 hasPublicationYear "2020" @default.
- W3011699162 type Work @default.
- W3011699162 sameAs 3011699162 @default.
- W3011699162 citedByCount "3" @default.
- W3011699162 countsByYear W30116991622022 @default.
- W3011699162 crossrefType "journal-article" @default.
- W3011699162 hasAuthorship W3011699162A5029607765 @default.
- W3011699162 hasBestOaLocation W30116991621 @default.
- W3011699162 hasConcept C11413529 @default.
- W3011699162 hasConcept C119599485 @default.
- W3011699162 hasConcept C127313418 @default.
- W3011699162 hasConcept C127413603 @default.
- W3011699162 hasConcept C134146338 @default.
- W3011699162 hasConcept C154945302 @default.
- W3011699162 hasConcept C155032097 @default.
- W3011699162 hasConcept C162324750 @default.
- W3011699162 hasConcept C165205528 @default.
- W3011699162 hasConcept C16910744 @default.
- W3011699162 hasConcept C175551986 @default.
- W3011699162 hasConcept C17626397 @default.
- W3011699162 hasConcept C199360897 @default.
- W3011699162 hasConcept C2777303404 @default.
- W3011699162 hasConcept C41008148 @default.
- W3011699162 hasConcept C50522688 @default.
- W3011699162 hasConcept C50644808 @default.
- W3011699162 hasConcept C62611344 @default.
- W3011699162 hasConcept C66938386 @default.
- W3011699162 hasConceptScore W3011699162C11413529 @default.
- W3011699162 hasConceptScore W3011699162C119599485 @default.
- W3011699162 hasConceptScore W3011699162C127313418 @default.
- W3011699162 hasConceptScore W3011699162C127413603 @default.
- W3011699162 hasConceptScore W3011699162C134146338 @default.
- W3011699162 hasConceptScore W3011699162C154945302 @default.
- W3011699162 hasConceptScore W3011699162C155032097 @default.
- W3011699162 hasConceptScore W3011699162C162324750 @default.
- W3011699162 hasConceptScore W3011699162C165205528 @default.
- W3011699162 hasConceptScore W3011699162C16910744 @default.
- W3011699162 hasConceptScore W3011699162C175551986 @default.
- W3011699162 hasConceptScore W3011699162C17626397 @default.
- W3011699162 hasConceptScore W3011699162C199360897 @default.
- W3011699162 hasConceptScore W3011699162C2777303404 @default.
- W3011699162 hasConceptScore W3011699162C41008148 @default.
- W3011699162 hasConceptScore W3011699162C50522688 @default.
- W3011699162 hasConceptScore W3011699162C50644808 @default.
- W3011699162 hasConceptScore W3011699162C62611344 @default.
- W3011699162 hasConceptScore W3011699162C66938386 @default.
- W3011699162 hasIssue "3" @default.
- W3011699162 hasLocation W30116991621 @default.
- W3011699162 hasLocation W30116991622 @default.
- W3011699162 hasOpenAccess W3011699162 @default.
- W3011699162 hasPrimaryLocation W30116991621 @default.
- W3011699162 hasRelatedWork W1966862220 @default.
- W3011699162 hasRelatedWork W2082482750 @default.
- W3011699162 hasRelatedWork W2111678839 @default.
- W3011699162 hasRelatedWork W2349436282 @default.
- W3011699162 hasRelatedWork W2351314860 @default.
- W3011699162 hasRelatedWork W2385359864 @default.
- W3011699162 hasRelatedWork W2388528423 @default.
- W3011699162 hasRelatedWork W2391384657 @default.
- W3011699162 hasRelatedWork W73942355 @default.
- W3011699162 hasRelatedWork W772409092 @default.
- W3011699162 hasVolume "12" @default.
- W3011699162 isParatext "false" @default.
- W3011699162 isRetracted "false" @default.
- W3011699162 magId "3011699162" @default.
- W3011699162 workType "article" @default.