Matches in SemOpenAlex for { <https://semopenalex.org/work/W3011724338> ?p ?o ?g. }
Showing items 1 to 94 of
94
with 100 items per page.
- W3011724338 endingPage "147" @default.
- W3011724338 startingPage "135" @default.
- W3011724338 abstract "Fibromyalgia (FM) diagnosis remains a challenge for clinicians due to a lack of objective diagnostic tools. One proposed solution is the use of quantitative ultrasound (US) techniques, such as image texture analysis, which has demonstrated discriminatory capabilities with other chronic pain conditions. From this, we propose the use of image texture variables to construct and compare two machine learning models (support vector machine [SVM] and logistic regression) for differentiating between the trapezius muscle in healthy and FM patients. US videos of the right and left trapezius muscle were acquired from healthy ( n = 51) participants and those with FM ( n = 57). The videos were converted into 64,800 skeletal muscle regions of interest (ROIs) using MATLAB. The ROIs were filtered by an algorithm using the complex wavelet structural similarity index (CW-SSIM), which removed ROIs that were similar. Thirty-one texture variables were extracted from the ROIs, which were then used in nested cross-validation to construct SVM and elastic net regularized logistic regression models. The generalized performance accuracy of both models was estimated and confirmed with a final validation on a holdout test set. The predicted generalized performance accuracy of the SVM and logistic regression models was computed to be 83.9 ± 2.6% and 65.8 ± 1.7%, respectively. The models achieved accuracies of 84.1%, and 66.0% on the final holdout test set, validating performance estimates. Although both machine learning models differentiate between healthy trapezius muscle and that of patients with FM, only the SVM model demonstrated clinically relevant performance levels." @default.
- W3011724338 created "2020-03-23" @default.
- W3011724338 creator A5000922031 @default.
- W3011724338 creator A5057360997 @default.
- W3011724338 creator A5058129501 @default.
- W3011724338 creator A5083718009 @default.
- W3011724338 date "2020-03-16" @default.
- W3011724338 modified "2023-10-18" @default.
- W3011724338 title "Machine Learning Diagnostic Modeling for Classifying Fibromyalgia Using B-mode Ultrasound Images" @default.
- W3011724338 cites W1563088657 @default.
- W3011724338 cites W1681734083 @default.
- W3011724338 cites W1804689138 @default.
- W3011724338 cites W1923836728 @default.
- W3011724338 cites W1986148844 @default.
- W3011724338 cites W1986280275 @default.
- W3011724338 cites W2003145434 @default.
- W3011724338 cites W2018366934 @default.
- W3011724338 cites W2031534613 @default.
- W3011724338 cites W2041481324 @default.
- W3011724338 cites W2044465660 @default.
- W3011724338 cites W2050997943 @default.
- W3011724338 cites W2059432853 @default.
- W3011724338 cites W2105967067 @default.
- W3011724338 cites W2122825543 @default.
- W3011724338 cites W2149199519 @default.
- W3011724338 cites W2150734399 @default.
- W3011724338 cites W2513715080 @default.
- W3011724338 cites W2620556755 @default.
- W3011724338 cites W2735095789 @default.
- W3011724338 cites W2773651807 @default.
- W3011724338 cites W2778693718 @default.
- W3011724338 cites W2909343664 @default.
- W3011724338 cites W2936136722 @default.
- W3011724338 cites W4234698323 @default.
- W3011724338 doi "https://doi.org/10.1177/0161734620908789" @default.
- W3011724338 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32174253" @default.
- W3011724338 hasPublicationYear "2020" @default.
- W3011724338 type Work @default.
- W3011724338 sameAs 3011724338 @default.
- W3011724338 citedByCount "3" @default.
- W3011724338 countsByYear W30117243382021 @default.
- W3011724338 countsByYear W30117243382023 @default.
- W3011724338 crossrefType "journal-article" @default.
- W3011724338 hasAuthorship W3011724338A5000922031 @default.
- W3011724338 hasAuthorship W3011724338A5057360997 @default.
- W3011724338 hasAuthorship W3011724338A5058129501 @default.
- W3011724338 hasAuthorship W3011724338A5083718009 @default.
- W3011724338 hasConcept C119857082 @default.
- W3011724338 hasConcept C12267149 @default.
- W3011724338 hasConcept C136764020 @default.
- W3011724338 hasConcept C151956035 @default.
- W3011724338 hasConcept C153180895 @default.
- W3011724338 hasConcept C154945302 @default.
- W3011724338 hasConcept C169903167 @default.
- W3011724338 hasConcept C1862650 @default.
- W3011724338 hasConcept C27181475 @default.
- W3011724338 hasConcept C2777831278 @default.
- W3011724338 hasConcept C37616216 @default.
- W3011724338 hasConcept C41008148 @default.
- W3011724338 hasConcept C71924100 @default.
- W3011724338 hasConceptScore W3011724338C119857082 @default.
- W3011724338 hasConceptScore W3011724338C12267149 @default.
- W3011724338 hasConceptScore W3011724338C136764020 @default.
- W3011724338 hasConceptScore W3011724338C151956035 @default.
- W3011724338 hasConceptScore W3011724338C153180895 @default.
- W3011724338 hasConceptScore W3011724338C154945302 @default.
- W3011724338 hasConceptScore W3011724338C169903167 @default.
- W3011724338 hasConceptScore W3011724338C1862650 @default.
- W3011724338 hasConceptScore W3011724338C27181475 @default.
- W3011724338 hasConceptScore W3011724338C2777831278 @default.
- W3011724338 hasConceptScore W3011724338C37616216 @default.
- W3011724338 hasConceptScore W3011724338C41008148 @default.
- W3011724338 hasConceptScore W3011724338C71924100 @default.
- W3011724338 hasIssue "3" @default.
- W3011724338 hasLocation W30117243381 @default.
- W3011724338 hasOpenAccess W3011724338 @default.
- W3011724338 hasPrimaryLocation W30117243381 @default.
- W3011724338 hasRelatedWork W2041399278 @default.
- W3011724338 hasRelatedWork W2136184105 @default.
- W3011724338 hasRelatedWork W2160451891 @default.
- W3011724338 hasRelatedWork W2336974148 @default.
- W3011724338 hasRelatedWork W2937631562 @default.
- W3011724338 hasRelatedWork W3013125858 @default.
- W3011724338 hasRelatedWork W4379875305 @default.
- W3011724338 hasRelatedWork W4384828018 @default.
- W3011724338 hasRelatedWork W2187500075 @default.
- W3011724338 hasRelatedWork W2345184372 @default.
- W3011724338 hasVolume "42" @default.
- W3011724338 isParatext "false" @default.
- W3011724338 isRetracted "false" @default.
- W3011724338 magId "3011724338" @default.
- W3011724338 workType "article" @default.