Matches in SemOpenAlex for { <https://semopenalex.org/work/W3011738477> ?p ?o ?g. }
- W3011738477 endingPage "105753" @default.
- W3011738477 startingPage "105753" @default.
- W3011738477 abstract "Unsupervised techniques typically rely on the probability density distribution of the data to detect anomalies, where objects with low probability density are considered to be abnormal. However, modeling the density distribution of high dimensional data is known to be hard, making the problem of detecting anomalies from high-dimensional data challenging. The state-of-the-art methods solve this problem by first applying dimension reduction techniques to the data and then detecting anomalies in the low dimensional space. Unfortunately, the low dimensional space does not necessarily preserve the density distribution of the original high dimensional data. This jeopardizes the effectiveness of anomaly detection. In this work, we propose a novel high dimensional anomaly detection method called LAKE. The key idea of LAKE is to unify the representation learning capacity of layer-constrained variational autoencoder with the density estimation power of kernel density estimation (KDE). Then a probability density distribution of the high dimensional data can be learned, which is able to effectively separate the anomalies out. LAKE successfully consolidates the merits of the two worlds, namely layer-constrained variational autoencoder and KDE by using a probability density-aware strategy in the training process of the autoencoder. Extensive experiments on six public benchmark datasets demonstrate that our method significantly outperforms the state-of-the-art methods in detecting anomalies and achieves up to 37% improvement in F1 score." @default.
- W3011738477 created "2020-03-23" @default.
- W3011738477 creator A5038151167 @default.
- W3011738477 creator A5044354077 @default.
- W3011738477 creator A5068209849 @default.
- W3011738477 creator A5070663881 @default.
- W3011738477 creator A5072895530 @default.
- W3011738477 date "2020-05-01" @default.
- W3011738477 modified "2023-10-14" @default.
- W3011738477 title "Layer-constrained variational autoencoding kernel density estimation model for anomaly detection" @default.
- W3011738477 cites W2061240327 @default.
- W3011738477 cites W2122646361 @default.
- W3011738477 cites W2145962650 @default.
- W3011738477 cites W2340896621 @default.
- W3011738477 cites W2622202994 @default.
- W3011738477 cites W2760451156 @default.
- W3011738477 cites W2788760756 @default.
- W3011738477 cites W2901173481 @default.
- W3011738477 cites W2914570111 @default.
- W3011738477 cites W2963795951 @default.
- W3011738477 cites W2970868824 @default.
- W3011738477 cites W2971342653 @default.
- W3011738477 doi "https://doi.org/10.1016/j.knosys.2020.105753" @default.
- W3011738477 hasPublicationYear "2020" @default.
- W3011738477 type Work @default.
- W3011738477 sameAs 3011738477 @default.
- W3011738477 citedByCount "12" @default.
- W3011738477 countsByYear W30117384772021 @default.
- W3011738477 countsByYear W30117384772022 @default.
- W3011738477 countsByYear W30117384772023 @default.
- W3011738477 crossrefType "journal-article" @default.
- W3011738477 hasAuthorship W3011738477A5038151167 @default.
- W3011738477 hasAuthorship W3011738477A5044354077 @default.
- W3011738477 hasAuthorship W3011738477A5068209849 @default.
- W3011738477 hasAuthorship W3011738477A5070663881 @default.
- W3011738477 hasAuthorship W3011738477A5072895530 @default.
- W3011738477 hasConcept C101738243 @default.
- W3011738477 hasConcept C105795698 @default.
- W3011738477 hasConcept C108583219 @default.
- W3011738477 hasConcept C111030470 @default.
- W3011738477 hasConcept C11413529 @default.
- W3011738477 hasConcept C114614502 @default.
- W3011738477 hasConcept C121332964 @default.
- W3011738477 hasConcept C122280245 @default.
- W3011738477 hasConcept C12267149 @default.
- W3011738477 hasConcept C12997251 @default.
- W3011738477 hasConcept C13280743 @default.
- W3011738477 hasConcept C149441793 @default.
- W3011738477 hasConcept C153180895 @default.
- W3011738477 hasConcept C154945302 @default.
- W3011738477 hasConcept C185429906 @default.
- W3011738477 hasConcept C185798385 @default.
- W3011738477 hasConcept C189508267 @default.
- W3011738477 hasConcept C195699287 @default.
- W3011738477 hasConcept C197055811 @default.
- W3011738477 hasConcept C202444582 @default.
- W3011738477 hasConcept C205649164 @default.
- W3011738477 hasConcept C26873012 @default.
- W3011738477 hasConcept C30732413 @default.
- W3011738477 hasConcept C33676613 @default.
- W3011738477 hasConcept C33923547 @default.
- W3011738477 hasConcept C41008148 @default.
- W3011738477 hasConcept C70518039 @default.
- W3011738477 hasConcept C71134354 @default.
- W3011738477 hasConcept C739882 @default.
- W3011738477 hasConcept C74193536 @default.
- W3011738477 hasConcept C84894716 @default.
- W3011738477 hasConceptScore W3011738477C101738243 @default.
- W3011738477 hasConceptScore W3011738477C105795698 @default.
- W3011738477 hasConceptScore W3011738477C108583219 @default.
- W3011738477 hasConceptScore W3011738477C111030470 @default.
- W3011738477 hasConceptScore W3011738477C11413529 @default.
- W3011738477 hasConceptScore W3011738477C114614502 @default.
- W3011738477 hasConceptScore W3011738477C121332964 @default.
- W3011738477 hasConceptScore W3011738477C122280245 @default.
- W3011738477 hasConceptScore W3011738477C12267149 @default.
- W3011738477 hasConceptScore W3011738477C12997251 @default.
- W3011738477 hasConceptScore W3011738477C13280743 @default.
- W3011738477 hasConceptScore W3011738477C149441793 @default.
- W3011738477 hasConceptScore W3011738477C153180895 @default.
- W3011738477 hasConceptScore W3011738477C154945302 @default.
- W3011738477 hasConceptScore W3011738477C185429906 @default.
- W3011738477 hasConceptScore W3011738477C185798385 @default.
- W3011738477 hasConceptScore W3011738477C189508267 @default.
- W3011738477 hasConceptScore W3011738477C195699287 @default.
- W3011738477 hasConceptScore W3011738477C197055811 @default.
- W3011738477 hasConceptScore W3011738477C202444582 @default.
- W3011738477 hasConceptScore W3011738477C205649164 @default.
- W3011738477 hasConceptScore W3011738477C26873012 @default.
- W3011738477 hasConceptScore W3011738477C30732413 @default.
- W3011738477 hasConceptScore W3011738477C33676613 @default.
- W3011738477 hasConceptScore W3011738477C33923547 @default.
- W3011738477 hasConceptScore W3011738477C41008148 @default.
- W3011738477 hasConceptScore W3011738477C70518039 @default.
- W3011738477 hasConceptScore W3011738477C71134354 @default.
- W3011738477 hasConceptScore W3011738477C739882 @default.
- W3011738477 hasConceptScore W3011738477C74193536 @default.
- W3011738477 hasConceptScore W3011738477C84894716 @default.