Matches in SemOpenAlex for { <https://semopenalex.org/work/W3011809536> ?p ?o ?g. }
- W3011809536 endingPage "e0228500" @default.
- W3011809536 startingPage "e0228500" @default.
- W3011809536 abstract "Remote sensing has been used as an important means of modern crop production monitoring, especially for wheat quality prediction in the middle and late growth period. In order to further improve the accuracy of estimating grain protein content (GPC) through remote sensing, this study analyzed the quantitative relationship between 14 remote sensing variables obtained from images of environment and disaster monitoring and forecasting small satellite constellation system equipped with wide-band CCD sensors (abbreviated as HJ-CCD) and field-grown winter wheat GPC. The 14 remote sensing variables were normalized difference vegetation index (NDVI), soil-adjusted vegetation index (SAVI), optimized soil-adjusted vegetation index (OSAVI), nitrogen reflectance index (NRI), green normalized difference vegetation index (GNDVI), structure intensive pigment index (SIPI), plant senescence reflectance index (PSRI), enhanced vegetation index (EVI), difference vegetation index (DVI), ratio vegetation index (RVI), Rblue (reflectance at blue band), Rgreen (reflectance at green band), Rred (reflectance at red band) and Rnir (reflectance at near infrared band). The partial least square (PLS) algorithm was used to construct and validate the multivariate remote sensing model of predicting wheat GPC. The research showed a close relationship between wheat GPC and 12 remote sensing variables other than Rblue and Rgreen of the spectral reflectance bands. Among them, except PSRI and Rblue, Rgreen and Rred, other remote sensing vegetation indexes had significant multiple correlations. The optimal principal components of PLS model used to predict wheat GPC were: NDVI, SIPI, PSRI and EVI. All these were sensitive variables to predict wheat GPC. Through modeling set and verification set evaluation, GPC prediction models' coefficients of determination (R2) were 0.84 and 0.8, respectively. The root mean square errors (RMSE) were 0.43% and 0.54%, respectively. It indicated that the PLS algorithm model predicted wheat GPC better than models for linear regression (LR) and principal components analysis (PCA) algorithms. The PLS algorithm model’s prediction accuracies were above 90%. The improvement was by more than 20% than the model for LR algorithm and more than 15% higher than the model for PCA algorithm. The results could provide an effective way to improve the accuracy of remotely predicting winter wheat GPC through satellite images, and was conducive to large-area application and promotion." @default.
- W3011809536 created "2020-03-23" @default.
- W3011809536 creator A5005047234 @default.
- W3011809536 creator A5019813861 @default.
- W3011809536 creator A5041395889 @default.
- W3011809536 creator A5049131970 @default.
- W3011809536 creator A5061490866 @default.
- W3011809536 creator A5081643821 @default.
- W3011809536 creator A5091374111 @default.
- W3011809536 date "2020-03-11" @default.
- W3011809536 modified "2023-09-27" @default.
- W3011809536 title "Predicting grain protein content of field-grown winter wheat with satellite images and partial least square algorithm" @default.
- W3011809536 cites W1643716609 @default.
- W3011809536 cites W1773310362 @default.
- W3011809536 cites W1937910884 @default.
- W3011809536 cites W1971798222 @default.
- W3011809536 cites W1978266867 @default.
- W3011809536 cites W1985715348 @default.
- W3011809536 cites W1991541037 @default.
- W3011809536 cites W1993417862 @default.
- W3011809536 cites W1995784367 @default.
- W3011809536 cites W1999373227 @default.
- W3011809536 cites W2000330483 @default.
- W3011809536 cites W2000390208 @default.
- W3011809536 cites W2000911998 @default.
- W3011809536 cites W2003553369 @default.
- W3011809536 cites W2020081448 @default.
- W3011809536 cites W2033251710 @default.
- W3011809536 cites W2049048525 @default.
- W3011809536 cites W2049287129 @default.
- W3011809536 cites W2057891673 @default.
- W3011809536 cites W2058241480 @default.
- W3011809536 cites W2059138966 @default.
- W3011809536 cites W2059488281 @default.
- W3011809536 cites W2070965704 @default.
- W3011809536 cites W2080672099 @default.
- W3011809536 cites W2089464686 @default.
- W3011809536 cites W2094677081 @default.
- W3011809536 cites W2098688983 @default.
- W3011809536 cites W2102341754 @default.
- W3011809536 cites W2113998842 @default.
- W3011809536 cites W2116627051 @default.
- W3011809536 cites W2119868411 @default.
- W3011809536 cites W2135473780 @default.
- W3011809536 cites W2142955757 @default.
- W3011809536 cites W2150853822 @default.
- W3011809536 cites W2154674697 @default.
- W3011809536 cites W2339856376 @default.
- W3011809536 cites W2343193908 @default.
- W3011809536 cites W2514830628 @default.
- W3011809536 cites W2569689877 @default.
- W3011809536 cites W2600595427 @default.
- W3011809536 cites W2606285877 @default.
- W3011809536 cites W2609044008 @default.
- W3011809536 cites W2790628032 @default.
- W3011809536 cites W2799965583 @default.
- W3011809536 cites W2806548537 @default.
- W3011809536 cites W2809610391 @default.
- W3011809536 cites W2894725319 @default.
- W3011809536 cites W2931251749 @default.
- W3011809536 doi "https://doi.org/10.1371/journal.pone.0228500" @default.
- W3011809536 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7065814" @default.
- W3011809536 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32160185" @default.
- W3011809536 hasPublicationYear "2020" @default.
- W3011809536 type Work @default.
- W3011809536 sameAs 3011809536 @default.
- W3011809536 citedByCount "14" @default.
- W3011809536 countsByYear W30118095362020 @default.
- W3011809536 countsByYear W30118095362021 @default.
- W3011809536 countsByYear W30118095362022 @default.
- W3011809536 countsByYear W30118095362023 @default.
- W3011809536 crossrefType "journal-article" @default.
- W3011809536 hasAuthorship W3011809536A5005047234 @default.
- W3011809536 hasAuthorship W3011809536A5019813861 @default.
- W3011809536 hasAuthorship W3011809536A5041395889 @default.
- W3011809536 hasAuthorship W3011809536A5049131970 @default.
- W3011809536 hasAuthorship W3011809536A5061490866 @default.
- W3011809536 hasAuthorship W3011809536A5081643821 @default.
- W3011809536 hasAuthorship W3011809536A5091374111 @default.
- W3011809536 hasBestOaLocation W30118095361 @default.
- W3011809536 hasConcept C105795698 @default.
- W3011809536 hasConcept C108597893 @default.
- W3011809536 hasConcept C120665830 @default.
- W3011809536 hasConcept C121332964 @default.
- W3011809536 hasConcept C1276947 @default.
- W3011809536 hasConcept C142724271 @default.
- W3011809536 hasConcept C1549246 @default.
- W3011809536 hasConcept C161584116 @default.
- W3011809536 hasConcept C19269812 @default.
- W3011809536 hasConcept C205649164 @default.
- W3011809536 hasConcept C25989453 @default.
- W3011809536 hasConcept C2776133958 @default.
- W3011809536 hasConcept C2780376076 @default.
- W3011809536 hasConcept C33923547 @default.
- W3011809536 hasConcept C39432304 @default.
- W3011809536 hasConcept C62649853 @default.
- W3011809536 hasConcept C6557445 @default.
- W3011809536 hasConcept C71924100 @default.