Matches in SemOpenAlex for { <https://semopenalex.org/work/W3011835152> ?p ?o ?g. }
- W3011835152 endingPage "82" @default.
- W3011835152 startingPage "82" @default.
- W3011835152 abstract "The wide availability of multispectral satellite imagery through projects such as Landsat and Sentinel, combined with the introduction of deep learning in general and Convolutional Neural Networks (CNNs) in particular, has allowed for the rapid and effective analysis of multiple classes of problems pertaining to land coverage. Taking advantage of the two phenomena, we propose a machine learning model for the classification of land abandonment. We designed a Convolutional Neural Network architecture that outputs a classification probability for the presence of land abandonment in a given 15–25 ha grid element by using multispectral imaging data obtained through Sentinel Hub. For both the training and validation of the model, we used imagery of the Łódź Voivodeship in central Poland. The main source of truth was a 2009 orthophoto study available from the WMS (Web Map Service) of the Geoportal site. The model achieved 0.855 auc (area under curve), 0.47 loss, and 0.78 accuracy for the test dataset. Using the classification results and the Getis–Ord Gi* statistic, we prepared a map of cold- and hotspots with individual areas that exceed 50 km2. This thresholded heatmap allowed for an analysis of contributing factors for both low and intense land abandonment, demonstrating that common trends are identifiable through the interpretation of the classification results of the chosen model. We additionally performed a comparative field study on two selected cold- and hotspots. The study, along with the high-accuracy results of the model’s validation, confirms that CNN-type models are an effective tool for the automatic detection of land abandonment." @default.
- W3011835152 created "2020-03-23" @default.
- W3011835152 creator A5012557127 @default.
- W3011835152 creator A5020568346 @default.
- W3011835152 creator A5037836604 @default.
- W3011835152 creator A5053345627 @default.
- W3011835152 creator A5059077361 @default.
- W3011835152 date "2020-03-13" @default.
- W3011835152 modified "2023-09-23" @default.
- W3011835152 title "Detecting Land Abandonment in Łódź Voivodeship Using Convolutional Neural Networks" @default.
- W3011835152 cites W1479779462 @default.
- W3011835152 cites W1494025599 @default.
- W3011835152 cites W2007419288 @default.
- W3011835152 cites W2015386604 @default.
- W3011835152 cites W2029316659 @default.
- W3011835152 cites W2521189818 @default.
- W3011835152 cites W2529407698 @default.
- W3011835152 cites W2603641813 @default.
- W3011835152 cites W2604086375 @default.
- W3011835152 cites W2618530766 @default.
- W3011835152 cites W2620779710 @default.
- W3011835152 cites W2641842219 @default.
- W3011835152 cites W2779156595 @default.
- W3011835152 cites W2782517840 @default.
- W3011835152 cites W2810242891 @default.
- W3011835152 cites W2810270273 @default.
- W3011835152 cites W2811476753 @default.
- W3011835152 cites W2897160171 @default.
- W3011835152 cites W2914267938 @default.
- W3011835152 cites W2914272072 @default.
- W3011835152 cites W2936201962 @default.
- W3011835152 cites W2966668225 @default.
- W3011835152 cites W2970478409 @default.
- W3011835152 cites W3000178325 @default.
- W3011835152 doi "https://doi.org/10.3390/land9030082" @default.
- W3011835152 hasPublicationYear "2020" @default.
- W3011835152 type Work @default.
- W3011835152 sameAs 3011835152 @default.
- W3011835152 citedByCount "4" @default.
- W3011835152 countsByYear W30118351522020 @default.
- W3011835152 countsByYear W30118351522021 @default.
- W3011835152 countsByYear W30118351522023 @default.
- W3011835152 crossrefType "journal-article" @default.
- W3011835152 hasAuthorship W3011835152A5012557127 @default.
- W3011835152 hasAuthorship W3011835152A5020568346 @default.
- W3011835152 hasAuthorship W3011835152A5037836604 @default.
- W3011835152 hasAuthorship W3011835152A5053345627 @default.
- W3011835152 hasAuthorship W3011835152A5059077361 @default.
- W3011835152 hasBestOaLocation W30118351521 @default.
- W3011835152 hasConcept C108583219 @default.
- W3011835152 hasConcept C119857082 @default.
- W3011835152 hasConcept C124101348 @default.
- W3011835152 hasConcept C127413603 @default.
- W3011835152 hasConcept C147176958 @default.
- W3011835152 hasConcept C154945302 @default.
- W3011835152 hasConcept C163864269 @default.
- W3011835152 hasConcept C173163844 @default.
- W3011835152 hasConcept C205649164 @default.
- W3011835152 hasConcept C41008148 @default.
- W3011835152 hasConcept C4792198 @default.
- W3011835152 hasConcept C58640448 @default.
- W3011835152 hasConcept C62649853 @default.
- W3011835152 hasConcept C81363708 @default.
- W3011835152 hasConcept C82789328 @default.
- W3011835152 hasConceptScore W3011835152C108583219 @default.
- W3011835152 hasConceptScore W3011835152C119857082 @default.
- W3011835152 hasConceptScore W3011835152C124101348 @default.
- W3011835152 hasConceptScore W3011835152C127413603 @default.
- W3011835152 hasConceptScore W3011835152C147176958 @default.
- W3011835152 hasConceptScore W3011835152C154945302 @default.
- W3011835152 hasConceptScore W3011835152C163864269 @default.
- W3011835152 hasConceptScore W3011835152C173163844 @default.
- W3011835152 hasConceptScore W3011835152C205649164 @default.
- W3011835152 hasConceptScore W3011835152C41008148 @default.
- W3011835152 hasConceptScore W3011835152C4792198 @default.
- W3011835152 hasConceptScore W3011835152C58640448 @default.
- W3011835152 hasConceptScore W3011835152C62649853 @default.
- W3011835152 hasConceptScore W3011835152C81363708 @default.
- W3011835152 hasConceptScore W3011835152C82789328 @default.
- W3011835152 hasIssue "3" @default.
- W3011835152 hasLocation W30118351521 @default.
- W3011835152 hasLocation W30118351522 @default.
- W3011835152 hasOpenAccess W3011835152 @default.
- W3011835152 hasPrimaryLocation W30118351521 @default.
- W3011835152 hasRelatedWork W1630889572 @default.
- W3011835152 hasRelatedWork W2139294397 @default.
- W3011835152 hasRelatedWork W2731899572 @default.
- W3011835152 hasRelatedWork W2999805992 @default.
- W3011835152 hasRelatedWork W3116150086 @default.
- W3011835152 hasRelatedWork W3133861977 @default.
- W3011835152 hasRelatedWork W4200173597 @default.
- W3011835152 hasRelatedWork W4291897433 @default.
- W3011835152 hasRelatedWork W4312417841 @default.
- W3011835152 hasRelatedWork W4321369474 @default.
- W3011835152 hasVolume "9" @default.
- W3011835152 isParatext "false" @default.
- W3011835152 isRetracted "false" @default.
- W3011835152 magId "3011835152" @default.