Matches in SemOpenAlex for { <https://semopenalex.org/work/W3011856552> ?p ?o ?g. }
Showing items 1 to 85 of
85
with 100 items per page.
- W3011856552 endingPage "012111" @default.
- W3011856552 startingPage "012111" @default.
- W3011856552 abstract "With the continuous deepening of the informationization and intelligentization of the electric power industry in China, the fault early warning and diagnosis system of the electric power verification system in China reflects the current situation of insufficient intelligentization. Traditional fault diagnosis system collects operation data of verification system through sensor network, acquisition network and log message technology, and then carries out manual or semi-manual fault detection and processing. There is a small amount of data collected, and the traditional data mining methods such as expert judgment method, decision tree method and SDG model have low efficiency and poor diagnosis effect. In view of this situation, this paper introduces deep learning technology into the verification system of automated pipeline, realizes the integration of fault early warning and diagnosis, builds a fault classification model for automated pipeline based on deep learning neural network, and tests and verifies the effect of model early warning with actual system operation data. The validation of the algorithm gives the result of fault early warning in the form of probability, fully considers the factors affecting the interaction between the pipeline and equipment, has a better effect of fault early warning provides more accurate reference for fault detection and prevention of automated pipeline." @default.
- W3011856552 created "2020-03-23" @default.
- W3011856552 creator A5006053776 @default.
- W3011856552 creator A5018704791 @default.
- W3011856552 creator A5028165423 @default.
- W3011856552 creator A5032427595 @default.
- W3011856552 creator A5034593479 @default.
- W3011856552 creator A5035321872 @default.
- W3011856552 date "2020-03-17" @default.
- W3011856552 modified "2023-09-28" @default.
- W3011856552 title "A Power Metering Pipeline Fault Warning Method Based on Deep Learning" @default.
- W3011856552 cites W1964812476 @default.
- W3011856552 cites W2112841646 @default.
- W3011856552 cites W2121778397 @default.
- W3011856552 doi "https://doi.org/10.1088/1757-899x/740/1/012111" @default.
- W3011856552 hasPublicationYear "2020" @default.
- W3011856552 type Work @default.
- W3011856552 sameAs 3011856552 @default.
- W3011856552 citedByCount "0" @default.
- W3011856552 crossrefType "journal-article" @default.
- W3011856552 hasAuthorship W3011856552A5006053776 @default.
- W3011856552 hasAuthorship W3011856552A5018704791 @default.
- W3011856552 hasAuthorship W3011856552A5028165423 @default.
- W3011856552 hasAuthorship W3011856552A5032427595 @default.
- W3011856552 hasAuthorship W3011856552A5034593479 @default.
- W3011856552 hasAuthorship W3011856552A5035321872 @default.
- W3011856552 hasBestOaLocation W30118565521 @default.
- W3011856552 hasConcept C108583219 @default.
- W3011856552 hasConcept C121332964 @default.
- W3011856552 hasConcept C124101348 @default.
- W3011856552 hasConcept C127313418 @default.
- W3011856552 hasConcept C127413603 @default.
- W3011856552 hasConcept C154945302 @default.
- W3011856552 hasConcept C163258240 @default.
- W3011856552 hasConcept C165205528 @default.
- W3011856552 hasConcept C175551986 @default.
- W3011856552 hasConcept C199360897 @default.
- W3011856552 hasConcept C200601418 @default.
- W3011856552 hasConcept C29825287 @default.
- W3011856552 hasConcept C41008148 @default.
- W3011856552 hasConcept C43521106 @default.
- W3011856552 hasConcept C50644808 @default.
- W3011856552 hasConcept C62520636 @default.
- W3011856552 hasConcept C76155785 @default.
- W3011856552 hasConcept C79403827 @default.
- W3011856552 hasConcept C89227174 @default.
- W3011856552 hasConceptScore W3011856552C108583219 @default.
- W3011856552 hasConceptScore W3011856552C121332964 @default.
- W3011856552 hasConceptScore W3011856552C124101348 @default.
- W3011856552 hasConceptScore W3011856552C127313418 @default.
- W3011856552 hasConceptScore W3011856552C127413603 @default.
- W3011856552 hasConceptScore W3011856552C154945302 @default.
- W3011856552 hasConceptScore W3011856552C163258240 @default.
- W3011856552 hasConceptScore W3011856552C165205528 @default.
- W3011856552 hasConceptScore W3011856552C175551986 @default.
- W3011856552 hasConceptScore W3011856552C199360897 @default.
- W3011856552 hasConceptScore W3011856552C200601418 @default.
- W3011856552 hasConceptScore W3011856552C29825287 @default.
- W3011856552 hasConceptScore W3011856552C41008148 @default.
- W3011856552 hasConceptScore W3011856552C43521106 @default.
- W3011856552 hasConceptScore W3011856552C50644808 @default.
- W3011856552 hasConceptScore W3011856552C62520636 @default.
- W3011856552 hasConceptScore W3011856552C76155785 @default.
- W3011856552 hasConceptScore W3011856552C79403827 @default.
- W3011856552 hasConceptScore W3011856552C89227174 @default.
- W3011856552 hasLocation W30118565521 @default.
- W3011856552 hasOpenAccess W3011856552 @default.
- W3011856552 hasPrimaryLocation W30118565521 @default.
- W3011856552 hasRelatedWork W2018656665 @default.
- W3011856552 hasRelatedWork W2019376565 @default.
- W3011856552 hasRelatedWork W2361543526 @default.
- W3011856552 hasRelatedWork W2364253076 @default.
- W3011856552 hasRelatedWork W2547466793 @default.
- W3011856552 hasRelatedWork W2731899572 @default.
- W3011856552 hasRelatedWork W2899084033 @default.
- W3011856552 hasRelatedWork W2944416598 @default.
- W3011856552 hasRelatedWork W4205453645 @default.
- W3011856552 hasRelatedWork W4312350780 @default.
- W3011856552 hasVolume "740" @default.
- W3011856552 isParatext "false" @default.
- W3011856552 isRetracted "false" @default.
- W3011856552 magId "3011856552" @default.
- W3011856552 workType "article" @default.