Matches in SemOpenAlex for { <https://semopenalex.org/work/W3011890467> ?p ?o ?g. }
Showing items 1 to 79 of
79
with 100 items per page.
- W3011890467 abstract "In this paper, we present a lexicon-based sentiment analysis method that is used as an annotation scheme for identifying fine-grained emotions in social media topics. This methodology is based on Plutchik's wheel of emotion and Latent Dirichlet Allocation (LDA). We firstly annotate a tweet based on eight basic emotions and secondly we compute further eight dyads as a product of the basic emotions. We demonstrate that this lexicon-based approach achieves up to 78.53% ground truth accuracy when compared to human annotated data that is split into positive and negative polarities. Moreover, we investigate a novel means to identify trending topics in twitter data by utilizing LDA and focusing on fine-grained emotions associated with each tweet. We compare the most dominant emotions in social media as topics from an emotion-document pooling strategy and compare the results to an author-topic modeling strategy." @default.
- W3011890467 created "2020-03-23" @default.
- W3011890467 creator A5063894825 @default.
- W3011890467 creator A5072892003 @default.
- W3011890467 date "2019-07-01" @default.
- W3011890467 modified "2023-09-25" @default.
- W3011890467 title "Pooling Tweets by Fine-Grained Emotions to Uncover Topic Trends in Social Media" @default.
- W3011890467 cites W115674827 @default.
- W3011890467 cites W1508666480 @default.
- W3011890467 cites W1569507287 @default.
- W3011890467 cites W1839863673 @default.
- W3011890467 cites W1964497076 @default.
- W3011890467 cites W1966797434 @default.
- W3011890467 cites W1989343098 @default.
- W3011890467 cites W2004192095 @default.
- W3011890467 cites W2040467972 @default.
- W3011890467 cites W2084046180 @default.
- W3011890467 cites W2091084672 @default.
- W3011890467 cites W2108420397 @default.
- W3011890467 cites W2156413587 @default.
- W3011890467 cites W2164972036 @default.
- W3011890467 cites W2168493061 @default.
- W3011890467 cites W2170414372 @default.
- W3011890467 cites W2467186984 @default.
- W3011890467 cites W2531944894 @default.
- W3011890467 cites W2741447225 @default.
- W3011890467 cites W2799040008 @default.
- W3011890467 cites W3027304069 @default.
- W3011890467 cites W4254724182 @default.
- W3011890467 doi "https://doi.org/10.23919/fusion43075.2019.9011265" @default.
- W3011890467 hasPublicationYear "2019" @default.
- W3011890467 type Work @default.
- W3011890467 sameAs 3011890467 @default.
- W3011890467 citedByCount "1" @default.
- W3011890467 countsByYear W30118904672023 @default.
- W3011890467 crossrefType "proceedings-article" @default.
- W3011890467 hasAuthorship W3011890467A5063894825 @default.
- W3011890467 hasAuthorship W3011890467A5072892003 @default.
- W3011890467 hasConcept C136764020 @default.
- W3011890467 hasConcept C146849305 @default.
- W3011890467 hasConcept C154945302 @default.
- W3011890467 hasConcept C171686336 @default.
- W3011890467 hasConcept C204321447 @default.
- W3011890467 hasConcept C2776321320 @default.
- W3011890467 hasConcept C2778121359 @default.
- W3011890467 hasConcept C41008148 @default.
- W3011890467 hasConcept C500882744 @default.
- W3011890467 hasConcept C518677369 @default.
- W3011890467 hasConcept C66402592 @default.
- W3011890467 hasConcept C70437156 @default.
- W3011890467 hasConceptScore W3011890467C136764020 @default.
- W3011890467 hasConceptScore W3011890467C146849305 @default.
- W3011890467 hasConceptScore W3011890467C154945302 @default.
- W3011890467 hasConceptScore W3011890467C171686336 @default.
- W3011890467 hasConceptScore W3011890467C204321447 @default.
- W3011890467 hasConceptScore W3011890467C2776321320 @default.
- W3011890467 hasConceptScore W3011890467C2778121359 @default.
- W3011890467 hasConceptScore W3011890467C41008148 @default.
- W3011890467 hasConceptScore W3011890467C500882744 @default.
- W3011890467 hasConceptScore W3011890467C518677369 @default.
- W3011890467 hasConceptScore W3011890467C66402592 @default.
- W3011890467 hasConceptScore W3011890467C70437156 @default.
- W3011890467 hasLocation W30118904671 @default.
- W3011890467 hasOpenAccess W3011890467 @default.
- W3011890467 hasPrimaryLocation W30118904671 @default.
- W3011890467 hasRelatedWork W1988939740 @default.
- W3011890467 hasRelatedWork W2005110322 @default.
- W3011890467 hasRelatedWork W2757868051 @default.
- W3011890467 hasRelatedWork W3011890467 @default.
- W3011890467 hasRelatedWork W3099934312 @default.
- W3011890467 hasRelatedWork W3150383853 @default.
- W3011890467 hasRelatedWork W3204658930 @default.
- W3011890467 hasRelatedWork W4200305879 @default.
- W3011890467 hasRelatedWork W4205363784 @default.
- W3011890467 hasRelatedWork W4280613652 @default.
- W3011890467 isParatext "false" @default.
- W3011890467 isRetracted "false" @default.
- W3011890467 magId "3011890467" @default.
- W3011890467 workType "article" @default.