Matches in SemOpenAlex for { <https://semopenalex.org/work/W3011899335> ?p ?o ?g. }
- W3011899335 endingPage "1073" @default.
- W3011899335 startingPage "1055" @default.
- W3011899335 abstract "Abstract. For the purpose of providing reliable and robust air quality predictions, an air quality prediction system was developed for the main air quality criteria species in South Korea (PM10, PM2.5, CO, O3 and SO2). The main caveat of the system is to prepare the initial conditions (ICs) of the Community Multiscale Air Quality (CMAQ) model simulations using observations from the Geostationary Ocean Color Imager (GOCI) and ground-based monitoring networks in northeast Asia. The performance of the air quality prediction system was evaluated during the Korea-United States Air Quality Study (KORUS-AQ) campaign period (1 May–12 June 2016). Data assimilation (DA) of optimal interpolation (OI) with Kalman filter was used in this study. One major advantage of the system is that it can predict not only particulate matter (PM) concentrations but also PM chemical composition including five main constituents: sulfate (SO42-), nitrate (NO3-), ammonium (NH4+), organic aerosols (OAs) and elemental carbon (EC). In addition, it is also capable of predicting the concentrations of gaseous pollutants (CO, O3 and SO2). In this sense, this new air quality prediction system is comprehensive. The results with the ICs (DA RUN) were compared with those of the CMAQ simulations without ICs (BASE RUN). For almost all of the species, the application of ICs led to improved performance in terms of correlation, errors and biases over the entire campaign period. The DA RUN agreed reasonably well with the observations for PM10 (index of agreement IOA =0.60; mean bias MB =-13.54) and PM2.5 (IOA =0.71; MB =-2.43) as compared to the BASE RUN for PM10 (IOA =0.51; MB =-27.18) and PM2.5 (IOA =0.67; MB =-9.9). A significant improvement was also found with the DA RUN in terms of bias. For example, for CO, the MB of −0.27 (BASE RUN) was greatly enhanced to −0.036 (DA RUN). In the cases of O3 and SO2, the DA RUN also showed better performance than the BASE RUN. Further, several more practical issues frequently encountered in the air quality prediction system were also discussed. In order to attain more accurate ozone predictions, the DA of NO2 mixing ratios should be implemented with careful consideration of the measurement artifacts (i.e., inclusion of alkyl nitrates, HNO3 and peroxyacetyl nitrates – PANs – in the ground-observed NO2 mixing ratios). It was also discussed that, in order to ensure accurate nocturnal predictions of the concentrations of the ambient species, accurate predictions of the mixing layer heights (MLHs) should be achieved from the meteorological modeling. Several advantages of the current air quality prediction system, such as its non-static free-parameter scheme, dust episode prediction and possible multiple implementations of DA prior to actual predictions, were also discussed. These configurations are all possible because the current DA system is not computationally expensive. In the ongoing and future works, more advanced DA techniques such as the 3D variational (3DVAR) method and ensemble Kalman filter (EnK) are being tested and will be introduced to the Korean air quality prediction system (KAQPS)." @default.
- W3011899335 created "2020-03-23" @default.
- W3011899335 creator A5015108883 @default.
- W3011899335 creator A5040335633 @default.
- W3011899335 creator A5050163637 @default.
- W3011899335 creator A5055129736 @default.
- W3011899335 creator A5059784629 @default.
- W3011899335 creator A5062279724 @default.
- W3011899335 creator A5063090617 @default.
- W3011899335 creator A5063765949 @default.
- W3011899335 creator A5081154054 @default.
- W3011899335 creator A5083263383 @default.
- W3011899335 creator A5084473082 @default.
- W3011899335 creator A5090297468 @default.
- W3011899335 date "2020-03-10" @default.
- W3011899335 modified "2023-10-01" @default.
- W3011899335 title "Development of Korean Air Quality Prediction System version 1 (KAQPS v1) with focuses on practical issues" @default.
- W3011899335 cites W1904528511 @default.
- W3011899335 cites W1963978692 @default.
- W3011899335 cites W1978685286 @default.
- W3011899335 cites W1985140228 @default.
- W3011899335 cites W1990892858 @default.
- W3011899335 cites W1993512681 @default.
- W3011899335 cites W1995275261 @default.
- W3011899335 cites W1997132789 @default.
- W3011899335 cites W2002570697 @default.
- W3011899335 cites W2004730886 @default.
- W3011899335 cites W2008641894 @default.
- W3011899335 cites W2011010008 @default.
- W3011899335 cites W2013703069 @default.
- W3011899335 cites W2017585618 @default.
- W3011899335 cites W2025274119 @default.
- W3011899335 cites W2026516259 @default.
- W3011899335 cites W2028979275 @default.
- W3011899335 cites W2030221894 @default.
- W3011899335 cites W2030239766 @default.
- W3011899335 cites W2035388338 @default.
- W3011899335 cites W2038903734 @default.
- W3011899335 cites W2042692910 @default.
- W3011899335 cites W2054226608 @default.
- W3011899335 cites W2058560210 @default.
- W3011899335 cites W2061286768 @default.
- W3011899335 cites W2062220814 @default.
- W3011899335 cites W2066619267 @default.
- W3011899335 cites W2072356395 @default.
- W3011899335 cites W2072480927 @default.
- W3011899335 cites W2073767379 @default.
- W3011899335 cites W2073945818 @default.
- W3011899335 cites W2079699162 @default.
- W3011899335 cites W2089340037 @default.
- W3011899335 cites W2089433206 @default.
- W3011899335 cites W2089727804 @default.
- W3011899335 cites W2098835711 @default.
- W3011899335 cites W2104804203 @default.
- W3011899335 cites W2110179017 @default.
- W3011899335 cites W2116124023 @default.
- W3011899335 cites W2117076265 @default.
- W3011899335 cites W2117123725 @default.
- W3011899335 cites W2122871233 @default.
- W3011899335 cites W2131483702 @default.
- W3011899335 cites W2135902443 @default.
- W3011899335 cites W2139206491 @default.
- W3011899335 cites W2139673685 @default.
- W3011899335 cites W2151181273 @default.
- W3011899335 cites W2152811544 @default.
- W3011899335 cites W2157281013 @default.
- W3011899335 cites W2160741281 @default.
- W3011899335 cites W2161467829 @default.
- W3011899335 cites W2162761156 @default.
- W3011899335 cites W2165405661 @default.
- W3011899335 cites W2178483954 @default.
- W3011899335 cites W2549445838 @default.
- W3011899335 cites W2603801356 @default.
- W3011899335 cites W2731930520 @default.
- W3011899335 cites W2778350156 @default.
- W3011899335 cites W2783382870 @default.
- W3011899335 cites W2929532340 @default.
- W3011899335 cites W2955601895 @default.
- W3011899335 cites W4213327538 @default.
- W3011899335 doi "https://doi.org/10.5194/gmd-13-1055-2020" @default.
- W3011899335 hasPublicationYear "2020" @default.
- W3011899335 type Work @default.
- W3011899335 sameAs 3011899335 @default.
- W3011899335 citedByCount "15" @default.
- W3011899335 countsByYear W30118993352020 @default.
- W3011899335 countsByYear W30118993352021 @default.
- W3011899335 countsByYear W30118993352022 @default.
- W3011899335 countsByYear W30118993352023 @default.
- W3011899335 crossrefType "journal-article" @default.
- W3011899335 hasAuthorship W3011899335A5015108883 @default.
- W3011899335 hasAuthorship W3011899335A5040335633 @default.
- W3011899335 hasAuthorship W3011899335A5050163637 @default.
- W3011899335 hasAuthorship W3011899335A5055129736 @default.
- W3011899335 hasAuthorship W3011899335A5059784629 @default.
- W3011899335 hasAuthorship W3011899335A5062279724 @default.
- W3011899335 hasAuthorship W3011899335A5063090617 @default.
- W3011899335 hasAuthorship W3011899335A5063765949 @default.
- W3011899335 hasAuthorship W3011899335A5081154054 @default.