Matches in SemOpenAlex for { <https://semopenalex.org/work/W3011963364> ?p ?o ?g. }
Showing items 1 to 89 of
89
with 100 items per page.
- W3011963364 endingPage "90" @default.
- W3011963364 startingPage "78" @default.
- W3011963364 abstract "Advanced steganography modifies the complex regions of digital media to embed secret messages, while steganalysis aims to detect whether the digital media contains secret messages or not. It is well recognized that the content adaptivity which adopted in steganography should also be considered for steganalysis to improve detection accuracy, and thus the embedding locations are weighted (so called selection channel) to build steganalytic detectors. However, the existing selection channels incorporated into steganalysis are all manually designed and keep constant even in the whole training stage of deep learning based steganalysis. Therefore, the handcrafted and fixed selection channels leave much room for improvement in steganalysis. In this paper, we propose to learn the selection channels in an end-to-end manner. Our steganalytic scheme has two parts: selection channel network and steganalysis network. These two networks are trained together. The selection channel network learns and outs the selection channels for the steganalysis network, and the steganalysis network integrated with the learned selection channels predicts the final steganalysis results. Our experiments under various conditions show that the learned selection channels considerably improve the detection accuracy of steganalytic schemes against content-adaptive steganography, and also exhibit high universality and robustness in real-world environments." @default.
- W3011963364 created "2020-03-23" @default.
- W3011963364 creator A5001446444 @default.
- W3011963364 creator A5001538560 @default.
- W3011963364 creator A5024278302 @default.
- W3011963364 creator A5042947574 @default.
- W3011963364 creator A5087460479 @default.
- W3011963364 date "2020-08-01" @default.
- W3011963364 modified "2023-10-04" @default.
- W3011963364 title "Learning selection channels for image steganalysis in spatial domain" @default.
- W3011963364 cites W2009130368 @default.
- W3011963364 cites W2028197392 @default.
- W3011963364 cites W2040299224 @default.
- W3011963364 cites W2106663508 @default.
- W3011963364 cites W2134527668 @default.
- W3011963364 cites W2139842737 @default.
- W3011963364 cites W2192227561 @default.
- W3011963364 cites W2277839806 @default.
- W3011963364 cites W2322622188 @default.
- W3011963364 cites W2344725271 @default.
- W3011963364 cites W2579698629 @default.
- W3011963364 cites W2621048556 @default.
- W3011963364 cites W2680958618 @default.
- W3011963364 cites W2750692136 @default.
- W3011963364 cites W2765896841 @default.
- W3011963364 cites W2775462490 @default.
- W3011963364 cites W2890904214 @default.
- W3011963364 cites W2900141423 @default.
- W3011963364 cites W2965901996 @default.
- W3011963364 doi "https://doi.org/10.1016/j.neucom.2020.02.105" @default.
- W3011963364 hasPublicationYear "2020" @default.
- W3011963364 type Work @default.
- W3011963364 sameAs 3011963364 @default.
- W3011963364 citedByCount "13" @default.
- W3011963364 countsByYear W30119633642020 @default.
- W3011963364 countsByYear W30119633642021 @default.
- W3011963364 countsByYear W30119633642022 @default.
- W3011963364 countsByYear W30119633642023 @default.
- W3011963364 crossrefType "journal-article" @default.
- W3011963364 hasAuthorship W3011963364A5001446444 @default.
- W3011963364 hasAuthorship W3011963364A5001538560 @default.
- W3011963364 hasAuthorship W3011963364A5024278302 @default.
- W3011963364 hasAuthorship W3011963364A5042947574 @default.
- W3011963364 hasAuthorship W3011963364A5087460479 @default.
- W3011963364 hasConcept C104317684 @default.
- W3011963364 hasConcept C107368093 @default.
- W3011963364 hasConcept C108801101 @default.
- W3011963364 hasConcept C119857082 @default.
- W3011963364 hasConcept C153180895 @default.
- W3011963364 hasConcept C154945302 @default.
- W3011963364 hasConcept C185592680 @default.
- W3011963364 hasConcept C41008148 @default.
- W3011963364 hasConcept C41608201 @default.
- W3011963364 hasConcept C55493867 @default.
- W3011963364 hasConcept C63479239 @default.
- W3011963364 hasConcept C81917197 @default.
- W3011963364 hasConceptScore W3011963364C104317684 @default.
- W3011963364 hasConceptScore W3011963364C107368093 @default.
- W3011963364 hasConceptScore W3011963364C108801101 @default.
- W3011963364 hasConceptScore W3011963364C119857082 @default.
- W3011963364 hasConceptScore W3011963364C153180895 @default.
- W3011963364 hasConceptScore W3011963364C154945302 @default.
- W3011963364 hasConceptScore W3011963364C185592680 @default.
- W3011963364 hasConceptScore W3011963364C41008148 @default.
- W3011963364 hasConceptScore W3011963364C41608201 @default.
- W3011963364 hasConceptScore W3011963364C55493867 @default.
- W3011963364 hasConceptScore W3011963364C63479239 @default.
- W3011963364 hasConceptScore W3011963364C81917197 @default.
- W3011963364 hasFunder F4320321001 @default.
- W3011963364 hasLocation W30119633641 @default.
- W3011963364 hasOpenAccess W3011963364 @default.
- W3011963364 hasPrimaryLocation W30119633641 @default.
- W3011963364 hasRelatedWork W1499207442 @default.
- W3011963364 hasRelatedWork W1966340347 @default.
- W3011963364 hasRelatedWork W2040931326 @default.
- W3011963364 hasRelatedWork W2075420991 @default.
- W3011963364 hasRelatedWork W2132731735 @default.
- W3011963364 hasRelatedWork W2165886320 @default.
- W3011963364 hasRelatedWork W2280363829 @default.
- W3011963364 hasRelatedWork W2364183665 @default.
- W3011963364 hasRelatedWork W4233269241 @default.
- W3011963364 hasRelatedWork W4243922849 @default.
- W3011963364 hasVolume "401" @default.
- W3011963364 isParatext "false" @default.
- W3011963364 isRetracted "false" @default.
- W3011963364 magId "3011963364" @default.
- W3011963364 workType "article" @default.