Matches in SemOpenAlex for { <https://semopenalex.org/work/W3011981335> ?p ?o ?g. }
- W3011981335 endingPage "101107" @default.
- W3011981335 startingPage "101107" @default.
- W3011981335 abstract "Molecular dynamics (MD) simulations accelerated by high-performance computing (HPC) methods are powerful tools to investigate and extract the microscopic mechanisms characterizing the properties of soft materials such as self-assembled nanoparticles, virus capsids, confined electrolytes, and polymeric fluids. In this paper, we extend the idea developed in our earlier work of integrating machine learning (ML) methods with HPC-accelerated MD simulations of soft materials in order to enhance their predictive power and advance their applications for research and educational activities. Parallelized MD simulations of self-assembling ions in nanoconfinement are employed to demonstrate our approach. We find that an artificial neural network-based regression model successfully learns nearly all the interesting features associated with the output ionic density profiles over a broad range of ionic system parameters. The ML model generates predictions that are in excellent agreement with the results from MD simulations. The inference time associated with the ML model is over a factor of 10,000 smaller than the corresponding parallel MD simulation time. Through this demonstration, we introduce a “machine learning surrogate” for MD simulations of soft-matter systems. We develop and deploy a web application on nanoHUB to realize the advantages associated with the ML surrogate. The results demonstrate that the performance of MD simulations can be further enhanced by using ML, enabling rapid and accurate simulation-driven exploration of the soft material design space." @default.
- W3011981335 created "2020-03-23" @default.
- W3011981335 creator A5010329952 @default.
- W3011981335 creator A5044837997 @default.
- W3011981335 creator A5065597012 @default.
- W3011981335 creator A5078240493 @default.
- W3011981335 date "2020-04-01" @default.
- W3011981335 modified "2023-10-02" @default.
- W3011981335 title "Machine learning surrogates for molecular dynamics simulations of soft materials" @default.
- W3011981335 cites W1826576703 @default.
- W3011981335 cites W1967135521 @default.
- W3011981335 cites W1968471247 @default.
- W3011981335 cites W1970395023 @default.
- W3011981335 cites W2004369921 @default.
- W3011981335 cites W2012177242 @default.
- W3011981335 cites W2012220598 @default.
- W3011981335 cites W2019465613 @default.
- W3011981335 cites W2021269413 @default.
- W3011981335 cites W2029306692 @default.
- W3011981335 cites W2032431849 @default.
- W3011981335 cites W2046399495 @default.
- W3011981335 cites W2046789853 @default.
- W3011981335 cites W2052570591 @default.
- W3011981335 cites W2055858503 @default.
- W3011981335 cites W2092741009 @default.
- W3011981335 cites W2123699854 @default.
- W3011981335 cites W2128873947 @default.
- W3011981335 cites W2157144145 @default.
- W3011981335 cites W2178518208 @default.
- W3011981335 cites W2343807323 @default.
- W3011981335 cites W2396502916 @default.
- W3011981335 cites W2530819665 @default.
- W3011981335 cites W2547447472 @default.
- W3011981335 cites W2735765309 @default.
- W3011981335 cites W2737127163 @default.
- W3011981335 cites W2795981386 @default.
- W3011981335 cites W2800650932 @default.
- W3011981335 cites W2901995873 @default.
- W3011981335 cites W2906453878 @default.
- W3011981335 cites W2921271821 @default.
- W3011981335 cites W2941155491 @default.
- W3011981335 cites W2954200966 @default.
- W3011981335 cites W2963156478 @default.
- W3011981335 cites W2999164563 @default.
- W3011981335 cites W3098410513 @default.
- W3011981335 cites W3099310178 @default.
- W3011981335 doi "https://doi.org/10.1016/j.jocs.2020.101107" @default.
- W3011981335 hasPublicationYear "2020" @default.
- W3011981335 type Work @default.
- W3011981335 sameAs 3011981335 @default.
- W3011981335 citedByCount "33" @default.
- W3011981335 countsByYear W30119813352020 @default.
- W3011981335 countsByYear W30119813352021 @default.
- W3011981335 countsByYear W30119813352022 @default.
- W3011981335 countsByYear W30119813352023 @default.
- W3011981335 crossrefType "journal-article" @default.
- W3011981335 hasAuthorship W3011981335A5010329952 @default.
- W3011981335 hasAuthorship W3011981335A5044837997 @default.
- W3011981335 hasAuthorship W3011981335A5065597012 @default.
- W3011981335 hasAuthorship W3011981335A5078240493 @default.
- W3011981335 hasBestOaLocation W30119813351 @default.
- W3011981335 hasConcept C147597530 @default.
- W3011981335 hasConcept C147789679 @default.
- W3011981335 hasConcept C154945302 @default.
- W3011981335 hasConcept C185592680 @default.
- W3011981335 hasConcept C2776214188 @default.
- W3011981335 hasConcept C41008148 @default.
- W3011981335 hasConcept C48620588 @default.
- W3011981335 hasConcept C50644808 @default.
- W3011981335 hasConcept C59593255 @default.
- W3011981335 hasConcept C59789625 @default.
- W3011981335 hasConceptScore W3011981335C147597530 @default.
- W3011981335 hasConceptScore W3011981335C147789679 @default.
- W3011981335 hasConceptScore W3011981335C154945302 @default.
- W3011981335 hasConceptScore W3011981335C185592680 @default.
- W3011981335 hasConceptScore W3011981335C2776214188 @default.
- W3011981335 hasConceptScore W3011981335C41008148 @default.
- W3011981335 hasConceptScore W3011981335C48620588 @default.
- W3011981335 hasConceptScore W3011981335C50644808 @default.
- W3011981335 hasConceptScore W3011981335C59593255 @default.
- W3011981335 hasConceptScore W3011981335C59789625 @default.
- W3011981335 hasFunder F4320306076 @default.
- W3011981335 hasLocation W30119813351 @default.
- W3011981335 hasOpenAccess W3011981335 @default.
- W3011981335 hasPrimaryLocation W30119813351 @default.
- W3011981335 hasRelatedWork W1532102652 @default.
- W3011981335 hasRelatedWork W2016435909 @default.
- W3011981335 hasRelatedWork W2314755182 @default.
- W3011981335 hasRelatedWork W2323228009 @default.
- W3011981335 hasRelatedWork W2386387936 @default.
- W3011981335 hasRelatedWork W2390279801 @default.
- W3011981335 hasRelatedWork W2748952813 @default.
- W3011981335 hasRelatedWork W2899084033 @default.
- W3011981335 hasRelatedWork W3130900010 @default.
- W3011981335 hasRelatedWork W1629725936 @default.
- W3011981335 hasVolume "42" @default.
- W3011981335 isParatext "false" @default.
- W3011981335 isRetracted "false" @default.