Matches in SemOpenAlex for { <https://semopenalex.org/work/W3011999428> ?p ?o ?g. }
- W3011999428 endingPage "2050071" @default.
- W3011999428 startingPage "2050071" @default.
- W3011999428 abstract "This study aims at combining the machine learning technique with the Hausdorff derivative to solve one-dimensional Hausdorff derivative diffusion equations. In the proposed artificial neural network method, the multilayer feed-forward neural network is chosen and improved by using the Hausdorff derivative to the activation function of hidden layers. A trial solution is a combination of the boundary and initial condition terms and the network output, which can approximate the analytical solution. To transform the original Hausdorff derivative equation into a minimization problem, an error function is defined, where the coefficients are approximated by using the gradient descent algorithm in the back-propagation process. Two numerical examples are given to illustrate the accuracy and the robustness of the proposed method. The obtained results show that the improved machine learning technique is efficient in computing the Hausdorff derivative diffusion equations both from computational accuracy and stability." @default.
- W3011999428 created "2020-03-23" @default.
- W3011999428 creator A5006507348 @default.
- W3011999428 creator A5021452379 @default.
- W3011999428 creator A5036276196 @default.
- W3011999428 creator A5087981903 @default.
- W3011999428 date "2020-06-01" @default.
- W3011999428 modified "2023-10-18" @default.
- W3011999428 title "IMPROVED MACHINE LEARNING TECHNIQUE FOR SOLVING HAUSDORFF DERIVATIVE DIFFUSION EQUATIONS" @default.
- W3011999428 cites W1512069430 @default.
- W3011999428 cites W1807483718 @default.
- W3011999428 cites W1914794884 @default.
- W3011999428 cites W1976070030 @default.
- W3011999428 cites W1986995623 @default.
- W3011999428 cites W1991557475 @default.
- W3011999428 cites W1994714004 @default.
- W3011999428 cites W2028070629 @default.
- W3011999428 cites W2029659894 @default.
- W3011999428 cites W2062517214 @default.
- W3011999428 cites W2074770406 @default.
- W3011999428 cites W2093820071 @default.
- W3011999428 cites W2099111135 @default.
- W3011999428 cites W2107162131 @default.
- W3011999428 cites W2116267454 @default.
- W3011999428 cites W2118783129 @default.
- W3011999428 cites W2137811217 @default.
- W3011999428 cites W2160787324 @default.
- W3011999428 cites W2205144126 @default.
- W3011999428 cites W2304687139 @default.
- W3011999428 cites W2312712188 @default.
- W3011999428 cites W2331718920 @default.
- W3011999428 cites W2478495703 @default.
- W3011999428 cites W2524876288 @default.
- W3011999428 cites W2529221614 @default.
- W3011999428 cites W2605002585 @default.
- W3011999428 cites W2769197716 @default.
- W3011999428 cites W2785970143 @default.
- W3011999428 cites W2885466093 @default.
- W3011999428 cites W2885671311 @default.
- W3011999428 cites W2888316724 @default.
- W3011999428 cites W2908577864 @default.
- W3011999428 cites W2911807151 @default.
- W3011999428 cites W2916971348 @default.
- W3011999428 cites W2940730899 @default.
- W3011999428 cites W2940764745 @default.
- W3011999428 cites W2942891028 @default.
- W3011999428 cites W2960179298 @default.
- W3011999428 cites W2968370549 @default.
- W3011999428 cites W2971546887 @default.
- W3011999428 cites W2999961698 @default.
- W3011999428 cites W3101405177 @default.
- W3011999428 cites W4243085430 @default.
- W3011999428 cites W4246752051 @default.
- W3011999428 doi "https://doi.org/10.1142/s0218348x20500711" @default.
- W3011999428 hasPublicationYear "2020" @default.
- W3011999428 type Work @default.
- W3011999428 sameAs 3011999428 @default.
- W3011999428 citedByCount "3" @default.
- W3011999428 countsByYear W30119994282021 @default.
- W3011999428 countsByYear W30119994282022 @default.
- W3011999428 countsByYear W30119994282023 @default.
- W3011999428 crossrefType "journal-article" @default.
- W3011999428 hasAuthorship W3011999428A5006507348 @default.
- W3011999428 hasAuthorship W3011999428A5021452379 @default.
- W3011999428 hasAuthorship W3011999428A5036276196 @default.
- W3011999428 hasAuthorship W3011999428A5087981903 @default.
- W3011999428 hasConcept C106159729 @default.
- W3011999428 hasConcept C111771559 @default.
- W3011999428 hasConcept C11413529 @default.
- W3011999428 hasConcept C118615104 @default.
- W3011999428 hasConcept C134306372 @default.
- W3011999428 hasConcept C141898687 @default.
- W3011999428 hasConcept C153258448 @default.
- W3011999428 hasConcept C154945302 @default.
- W3011999428 hasConcept C155032097 @default.
- W3011999428 hasConcept C162324750 @default.
- W3011999428 hasConcept C191399826 @default.
- W3011999428 hasConcept C2011187 @default.
- W3011999428 hasConcept C28826006 @default.
- W3011999428 hasConcept C33923547 @default.
- W3011999428 hasConcept C41008148 @default.
- W3011999428 hasConcept C50644808 @default.
- W3011999428 hasConceptScore W3011999428C106159729 @default.
- W3011999428 hasConceptScore W3011999428C111771559 @default.
- W3011999428 hasConceptScore W3011999428C11413529 @default.
- W3011999428 hasConceptScore W3011999428C118615104 @default.
- W3011999428 hasConceptScore W3011999428C134306372 @default.
- W3011999428 hasConceptScore W3011999428C141898687 @default.
- W3011999428 hasConceptScore W3011999428C153258448 @default.
- W3011999428 hasConceptScore W3011999428C154945302 @default.
- W3011999428 hasConceptScore W3011999428C155032097 @default.
- W3011999428 hasConceptScore W3011999428C162324750 @default.
- W3011999428 hasConceptScore W3011999428C191399826 @default.
- W3011999428 hasConceptScore W3011999428C2011187 @default.
- W3011999428 hasConceptScore W3011999428C28826006 @default.
- W3011999428 hasConceptScore W3011999428C33923547 @default.
- W3011999428 hasConceptScore W3011999428C41008148 @default.
- W3011999428 hasConceptScore W3011999428C50644808 @default.