Matches in SemOpenAlex for { <https://semopenalex.org/work/W3011999573> ?p ?o ?g. }
Showing items 1 to 54 of
54
with 100 items per page.
- W3011999573 abstract "The quality of silicon wafers is an important factor restricting the efficiency and service life of photovoltaic power generation. In order to inspect the quality of silicon wafers, a defect recognition method based on orthogonal learning strategy is proposed where support vector machine is combined with binary tree for multi-class classification. Firstly, the adaptive threshold is set to remove the raster lines in the original image, and Fourier reconstruction image is used to enhance the defect. After that, we extract the image features. With the help of orthogonal learning strategy, an orthogonal array of feature data is established to implement the initial defect classification, and the classification results are analyzed by factor analysis. The extracted features are sorted according to their influence degree, and the improved support vector machine is used to classify the feature data accumulated one by one. Finally, genetic algorithm and grid search are introduced to optimize the parameters. The recognition accuracy of the designed classifier is up to 96.6%. The experimental results indicate the effectiveness of the proposed method." @default.
- W3011999573 created "2020-03-23" @default.
- W3011999573 creator A5000200794 @default.
- W3011999573 creator A5018009756 @default.
- W3011999573 creator A5032560997 @default.
- W3011999573 date "2019-11-13" @default.
- W3011999573 modified "2023-09-24" @default.
- W3011999573 title "Solar Cell Defect Recognition based on Orthogonal Learning Strategy" @default.
- W3011999573 cites W2049450500 @default.
- W3011999573 cites W2065178107 @default.
- W3011999573 cites W2162280586 @default.
- W3011999573 cites W2169781731 @default.
- W3011999573 cites W2216559353 @default.
- W3011999573 cites W2316410540 @default.
- W3011999573 cites W2794381107 @default.
- W3011999573 cites W2809382919 @default.
- W3011999573 doi "https://doi.org/10.1145/3379299.3379303" @default.
- W3011999573 hasPublicationYear "2019" @default.
- W3011999573 type Work @default.
- W3011999573 sameAs 3011999573 @default.
- W3011999573 citedByCount "0" @default.
- W3011999573 crossrefType "proceedings-article" @default.
- W3011999573 hasAuthorship W3011999573A5000200794 @default.
- W3011999573 hasAuthorship W3011999573A5018009756 @default.
- W3011999573 hasAuthorship W3011999573A5032560997 @default.
- W3011999573 hasConcept C153180895 @default.
- W3011999573 hasConcept C154945302 @default.
- W3011999573 hasConcept C192562407 @default.
- W3011999573 hasConcept C2780824857 @default.
- W3011999573 hasConcept C41008148 @default.
- W3011999573 hasConcept C49040817 @default.
- W3011999573 hasConceptScore W3011999573C153180895 @default.
- W3011999573 hasConceptScore W3011999573C154945302 @default.
- W3011999573 hasConceptScore W3011999573C192562407 @default.
- W3011999573 hasConceptScore W3011999573C2780824857 @default.
- W3011999573 hasConceptScore W3011999573C41008148 @default.
- W3011999573 hasConceptScore W3011999573C49040817 @default.
- W3011999573 hasLocation W30119995731 @default.
- W3011999573 hasOpenAccess W3011999573 @default.
- W3011999573 hasPrimaryLocation W30119995731 @default.
- W3011999573 hasRelatedWork W1978450727 @default.
- W3011999573 hasRelatedWork W2033914206 @default.
- W3011999573 hasRelatedWork W2146076056 @default.
- W3011999573 hasRelatedWork W2163831990 @default.
- W3011999573 hasRelatedWork W2378160586 @default.
- W3011999573 hasRelatedWork W2380927352 @default.
- W3011999573 hasRelatedWork W3003836766 @default.
- W3011999573 hasRelatedWork W3107474891 @default.
- W3011999573 hasRelatedWork W4244943737 @default.
- W3011999573 hasRelatedWork W2289108895 @default.
- W3011999573 isParatext "false" @default.
- W3011999573 isRetracted "false" @default.
- W3011999573 magId "3011999573" @default.
- W3011999573 workType "article" @default.