Matches in SemOpenAlex for { <https://semopenalex.org/work/W3012021085> ?p ?o ?g. }
- W3012021085 endingPage "3845" @default.
- W3012021085 startingPage "3835" @default.
- W3012021085 abstract "Microfluidic applications such as active particle sorting or selective enrichment require particle classification techniques that are capable of working in real time. In this paper, we explore the use of neural networks for fast label-free particle characterization during microfluidic impedance cytometry. A recurrent neural network is designed to process data from a novel impedance chip layout for enabling real-time multiparametric analysis of the measured impedance data streams. As demonstrated with both synthetic and experimental datasets, the trained network is able to characterize with good accuracy size, velocity, and cross-sectional position of beads, red blood cells, and yeasts, with a unitary prediction time of 0.4 ms. The proposed approach can be extended to other device designs and cell types for electrical parameter extraction. This combination of microfluidic impedance cytometry and machine learning can serve as a stepping stone to real-time single-cell analysis and sorting. Graphical Abstract." @default.
- W3012021085 created "2020-03-23" @default.
- W3012021085 creator A5002261086 @default.
- W3012021085 creator A5014966664 @default.
- W3012021085 creator A5035754006 @default.
- W3012021085 creator A5057679816 @default.
- W3012021085 creator A5061339214 @default.
- W3012021085 creator A5078346487 @default.
- W3012021085 date "2020-03-18" @default.
- W3012021085 modified "2023-09-29" @default.
- W3012021085 title "A neural network approach for real-time particle/cell characterization in microfluidic impedance cytometry" @default.
- W3012021085 cites W1498436455 @default.
- W3012021085 cites W1979702861 @default.
- W3012021085 cites W1996004376 @default.
- W3012021085 cites W2032724830 @default.
- W3012021085 cites W2043709810 @default.
- W3012021085 cites W2044005047 @default.
- W3012021085 cites W2046504596 @default.
- W3012021085 cites W2064675550 @default.
- W3012021085 cites W2079735306 @default.
- W3012021085 cites W2111621259 @default.
- W3012021085 cites W2128084896 @default.
- W3012021085 cites W2129799956 @default.
- W3012021085 cites W2168420480 @default.
- W3012021085 cites W2247214426 @default.
- W3012021085 cites W2291961022 @default.
- W3012021085 cites W2313356769 @default.
- W3012021085 cites W2586273870 @default.
- W3012021085 cites W2593469103 @default.
- W3012021085 cites W2597169829 @default.
- W3012021085 cites W2608126513 @default.
- W3012021085 cites W2742960669 @default.
- W3012021085 cites W2754511756 @default.
- W3012021085 cites W2755165534 @default.
- W3012021085 cites W2758818073 @default.
- W3012021085 cites W2759690896 @default.
- W3012021085 cites W2766795499 @default.
- W3012021085 cites W2786396059 @default.
- W3012021085 cites W2792694808 @default.
- W3012021085 cites W2796102077 @default.
- W3012021085 cites W2805632990 @default.
- W3012021085 cites W2883180608 @default.
- W3012021085 cites W2888971284 @default.
- W3012021085 cites W2893192409 @default.
- W3012021085 cites W2894885919 @default.
- W3012021085 cites W2895136575 @default.
- W3012021085 cites W2901127878 @default.
- W3012021085 cites W2905502540 @default.
- W3012021085 cites W2936176670 @default.
- W3012021085 cites W2937869753 @default.
- W3012021085 cites W2953714808 @default.
- W3012021085 cites W2954350473 @default.
- W3012021085 cites W2957396663 @default.
- W3012021085 cites W2969528609 @default.
- W3012021085 cites W2973829288 @default.
- W3012021085 cites W2977593842 @default.
- W3012021085 cites W2979672326 @default.
- W3012021085 cites W2990016144 @default.
- W3012021085 cites W2996462026 @default.
- W3012021085 cites W3103341224 @default.
- W3012021085 doi "https://doi.org/10.1007/s00216-020-02497-9" @default.
- W3012021085 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/8590873" @default.
- W3012021085 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32189012" @default.
- W3012021085 hasPublicationYear "2020" @default.
- W3012021085 type Work @default.
- W3012021085 sameAs 3012021085 @default.
- W3012021085 citedByCount "54" @default.
- W3012021085 countsByYear W30120210852020 @default.
- W3012021085 countsByYear W30120210852021 @default.
- W3012021085 countsByYear W30120210852022 @default.
- W3012021085 countsByYear W30120210852023 @default.
- W3012021085 crossrefType "journal-article" @default.
- W3012021085 hasAuthorship W3012021085A5002261086 @default.
- W3012021085 hasAuthorship W3012021085A5014966664 @default.
- W3012021085 hasAuthorship W3012021085A5035754006 @default.
- W3012021085 hasAuthorship W3012021085A5057679816 @default.
- W3012021085 hasAuthorship W3012021085A5061339214 @default.
- W3012021085 hasAuthorship W3012021085A5078346487 @default.
- W3012021085 hasBestOaLocation W30120210852 @default.
- W3012021085 hasConcept C111368507 @default.
- W3012021085 hasConcept C111696304 @default.
- W3012021085 hasConcept C11413529 @default.
- W3012021085 hasConcept C119599485 @default.
- W3012021085 hasConcept C127313418 @default.
- W3012021085 hasConcept C127413603 @default.
- W3012021085 hasConcept C138942068 @default.
- W3012021085 hasConcept C1491633281 @default.
- W3012021085 hasConcept C154945302 @default.
- W3012021085 hasConcept C15744967 @default.
- W3012021085 hasConcept C171250308 @default.
- W3012021085 hasConcept C17829176 @default.
- W3012021085 hasConcept C185592680 @default.
- W3012021085 hasConcept C186060115 @default.
- W3012021085 hasConcept C192562407 @default.
- W3012021085 hasConcept C19417346 @default.
- W3012021085 hasConcept C2775936607 @default.
- W3012021085 hasConcept C2778517922 @default.
- W3012021085 hasConcept C2780339063 @default.