Matches in SemOpenAlex for { <https://semopenalex.org/work/W3012069023> ?p ?o ?g. }
- W3012069023 endingPage "18" @default.
- W3012069023 startingPage "7" @default.
- W3012069023 abstract "The availability of Big Data has opened up opportunities to study supply chains. Whereas most scholars look to quantitative Big Data to build theoretical insights, in this paper we illustrate the value of qualitative Big Data. We begin by describing the nature and properties of qualitative Big Data. Then, we explain how one specific method, topic modeling, is particularly useful in theorizing supply chains. Topic modeling identifies co‐occurring words in qualitative Big Data, which can reveal new constructs that are difficult to see in such volume of data. Analyzing the relationships among constructs or their descriptive content can help to understand and explain how supply chains emerge, function, and adapt over time. As topic modeling has not yet been used to theorize supply chains, we illustrate the use of this method and its relevance for future research by unpacking two papers published in organizational theory journals." @default.
- W3012069023 created "2020-03-23" @default.
- W3012069023 creator A5046485145 @default.
- W3012069023 creator A5051908373 @default.
- W3012069023 creator A5056207297 @default.
- W3012069023 date "2020-04-01" @default.
- W3012069023 modified "2023-10-14" @default.
- W3012069023 title "Theorizing Supply Chains with Qualitative Big Data and Topic Modeling" @default.
- W3012069023 cites W1500693574 @default.
- W3012069023 cites W1687012967 @default.
- W3012069023 cites W1877361684 @default.
- W3012069023 cites W1975978277 @default.
- W3012069023 cites W1980774747 @default.
- W3012069023 cites W1986428794 @default.
- W3012069023 cites W2001082470 @default.
- W3012069023 cites W2002554683 @default.
- W3012069023 cites W2007144389 @default.
- W3012069023 cites W2017106479 @default.
- W3012069023 cites W2047507037 @default.
- W3012069023 cites W2071863310 @default.
- W3012069023 cites W2078600369 @default.
- W3012069023 cites W2095422038 @default.
- W3012069023 cites W2095655043 @default.
- W3012069023 cites W2117667023 @default.
- W3012069023 cites W2132314509 @default.
- W3012069023 cites W2142177477 @default.
- W3012069023 cites W2151549208 @default.
- W3012069023 cites W2169589185 @default.
- W3012069023 cites W2174706414 @default.
- W3012069023 cites W2185550989 @default.
- W3012069023 cites W2257912773 @default.
- W3012069023 cites W2416848540 @default.
- W3012069023 cites W2524966155 @default.
- W3012069023 cites W2528662334 @default.
- W3012069023 cites W2557088923 @default.
- W3012069023 cites W2576437897 @default.
- W3012069023 cites W2582859958 @default.
- W3012069023 cites W2606103268 @default.
- W3012069023 cites W2743804454 @default.
- W3012069023 cites W2753436765 @default.
- W3012069023 cites W2765805884 @default.
- W3012069023 cites W2768320505 @default.
- W3012069023 cites W2806183606 @default.
- W3012069023 cites W2807746239 @default.
- W3012069023 cites W2889364658 @default.
- W3012069023 cites W2895828453 @default.
- W3012069023 cites W2898821777 @default.
- W3012069023 cites W2924042653 @default.
- W3012069023 cites W2943121181 @default.
- W3012069023 cites W2969824238 @default.
- W3012069023 cites W2981457066 @default.
- W3012069023 cites W2995526978 @default.
- W3012069023 cites W3121621725 @default.
- W3012069023 cites W3124814550 @default.
- W3012069023 cites W4237791300 @default.
- W3012069023 doi "https://doi.org/10.1111/jscm.12224" @default.
- W3012069023 hasPublicationYear "2020" @default.
- W3012069023 type Work @default.
- W3012069023 sameAs 3012069023 @default.
- W3012069023 citedByCount "16" @default.
- W3012069023 countsByYear W30120690232020 @default.
- W3012069023 countsByYear W30120690232021 @default.
- W3012069023 countsByYear W30120690232022 @default.
- W3012069023 countsByYear W30120690232023 @default.
- W3012069023 crossrefType "journal-article" @default.
- W3012069023 hasAuthorship W3012069023A5046485145 @default.
- W3012069023 hasAuthorship W3012069023A5051908373 @default.
- W3012069023 hasAuthorship W3012069023A5056207297 @default.
- W3012069023 hasConcept C108713360 @default.
- W3012069023 hasConcept C119857082 @default.
- W3012069023 hasConcept C124101348 @default.
- W3012069023 hasConcept C138885662 @default.
- W3012069023 hasConcept C14036430 @default.
- W3012069023 hasConcept C144024400 @default.
- W3012069023 hasConcept C144133560 @default.
- W3012069023 hasConcept C158154518 @default.
- W3012069023 hasConcept C162853370 @default.
- W3012069023 hasConcept C17744445 @default.
- W3012069023 hasConcept C190248442 @default.
- W3012069023 hasConcept C199539241 @default.
- W3012069023 hasConcept C2522767166 @default.
- W3012069023 hasConcept C2776291640 @default.
- W3012069023 hasConcept C2777256151 @default.
- W3012069023 hasConcept C36289849 @default.
- W3012069023 hasConcept C41008148 @default.
- W3012069023 hasConcept C41895202 @default.
- W3012069023 hasConcept C56739046 @default.
- W3012069023 hasConcept C75684735 @default.
- W3012069023 hasConcept C78458016 @default.
- W3012069023 hasConcept C86803240 @default.
- W3012069023 hasConcept C87156501 @default.
- W3012069023 hasConceptScore W3012069023C108713360 @default.
- W3012069023 hasConceptScore W3012069023C119857082 @default.
- W3012069023 hasConceptScore W3012069023C124101348 @default.
- W3012069023 hasConceptScore W3012069023C138885662 @default.
- W3012069023 hasConceptScore W3012069023C14036430 @default.
- W3012069023 hasConceptScore W3012069023C144024400 @default.
- W3012069023 hasConceptScore W3012069023C144133560 @default.