Matches in SemOpenAlex for { <https://semopenalex.org/work/W3012132823> ?p ?o ?g. }
- W3012132823 endingPage "1014" @default.
- W3012132823 startingPage "1007" @default.
- W3012132823 abstract "Objective To assess the utility of machine learning algorithms for automatically estimating prognosis in patients with repaired tetralogy of Fallot (ToF) using cardiac magnetic resonance (CMR). Methods We included 372 patients with ToF who had undergone CMR imaging as part of a nationwide prospective study. Cine loops were retrieved and subjected to automatic deep learning (DL)-based image analysis, trained on independent, local CMR data, to derive measures of cardiac dimensions and function. This information was combined with established clinical parameters and ECG markers of prognosis. Results Over a median follow-up period of 10 years, 23 patients experienced an endpoint of death/aborted cardiac arrest or documented ventricular tachycardia (defined as >3 documented consecutive ventricular beats). On univariate Cox analysis, various DL parameters, including right atrial median area (HR 1.11/cm², p=0.003) and right ventricular long-axis strain (HR 0.80/%, p=0.009) emerged as significant predictors of outcome. DL parameters were related to adverse outcome independently of left and right ventricular ejection fraction and peak oxygen uptake (p<0.05 for all). A composite score of enlarged right atrial area and depressed right ventricular longitudinal function identified a ToF subgroup at significantly increased risk of adverse outcome (HR 2.1/unit, p=0.007). Conclusions We present data on the utility of machine learning algorithms trained on external imaging datasets to automatically estimate prognosis in patients with ToF. Due to the automated analysis process these two-dimensional-based algorithms may serve as surrogates for labour-intensive manually attained imaging parameters in patients with ToF." @default.
- W3012132823 created "2020-03-23" @default.
- W3012132823 creator A5011152418 @default.
- W3012132823 creator A5033197648 @default.
- W3012132823 creator A5040124225 @default.
- W3012132823 creator A5042252497 @default.
- W3012132823 creator A5043970361 @default.
- W3012132823 creator A5059984203 @default.
- W3012132823 creator A5066066263 @default.
- W3012132823 creator A5083550145 @default.
- W3012132823 creator A5089073628 @default.
- W3012132823 date "2020-03-11" @default.
- W3012132823 modified "2023-10-17" @default.
- W3012132823 title "Prediction of prognosis in patients with tetralogy of Fallot based on deep learning imaging analysis" @default.
- W3012132823 cites W2014078578 @default.
- W3012132823 cites W2040244694 @default.
- W3012132823 cites W2040339824 @default.
- W3012132823 cites W2050908226 @default.
- W3012132823 cites W2057192740 @default.
- W3012132823 cites W2072697480 @default.
- W3012132823 cites W2100962878 @default.
- W3012132823 cites W2104479872 @default.
- W3012132823 cites W2105573865 @default.
- W3012132823 cites W2107640203 @default.
- W3012132823 cites W2110851709 @default.
- W3012132823 cites W2140988810 @default.
- W3012132823 cites W2160624204 @default.
- W3012132823 cites W2161794495 @default.
- W3012132823 cites W2169550276 @default.
- W3012132823 cites W2183371114 @default.
- W3012132823 cites W2204818956 @default.
- W3012132823 cites W2617110182 @default.
- W3012132823 cites W2766068570 @default.
- W3012132823 cites W2789239788 @default.
- W3012132823 cites W2790916396 @default.
- W3012132823 cites W2803176574 @default.
- W3012132823 cites W2883049150 @default.
- W3012132823 cites W2886640324 @default.
- W3012132823 cites W2899314245 @default.
- W3012132823 cites W2905597474 @default.
- W3012132823 cites W2910076277 @default.
- W3012132823 cites W2913702106 @default.
- W3012132823 doi "https://doi.org/10.1136/heartjnl-2019-315962" @default.
- W3012132823 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32161041" @default.
- W3012132823 hasPublicationYear "2020" @default.
- W3012132823 type Work @default.
- W3012132823 sameAs 3012132823 @default.
- W3012132823 citedByCount "47" @default.
- W3012132823 countsByYear W30121328232020 @default.
- W3012132823 countsByYear W30121328232021 @default.
- W3012132823 countsByYear W30121328232022 @default.
- W3012132823 countsByYear W30121328232023 @default.
- W3012132823 crossrefType "journal-article" @default.
- W3012132823 hasAuthorship W3012132823A5011152418 @default.
- W3012132823 hasAuthorship W3012132823A5033197648 @default.
- W3012132823 hasAuthorship W3012132823A5040124225 @default.
- W3012132823 hasAuthorship W3012132823A5042252497 @default.
- W3012132823 hasAuthorship W3012132823A5043970361 @default.
- W3012132823 hasAuthorship W3012132823A5059984203 @default.
- W3012132823 hasAuthorship W3012132823A5066066263 @default.
- W3012132823 hasAuthorship W3012132823A5083550145 @default.
- W3012132823 hasAuthorship W3012132823A5089073628 @default.
- W3012132823 hasConcept C126322002 @default.
- W3012132823 hasConcept C126838900 @default.
- W3012132823 hasConcept C143409427 @default.
- W3012132823 hasConcept C144301174 @default.
- W3012132823 hasConcept C164705383 @default.
- W3012132823 hasConcept C2776008845 @default.
- W3012132823 hasConcept C2776331378 @default.
- W3012132823 hasConcept C2778198053 @default.
- W3012132823 hasConcept C2778646171 @default.
- W3012132823 hasConcept C2780074459 @default.
- W3012132823 hasConcept C38180746 @default.
- W3012132823 hasConcept C71924100 @default.
- W3012132823 hasConcept C78085059 @default.
- W3012132823 hasConceptScore W3012132823C126322002 @default.
- W3012132823 hasConceptScore W3012132823C126838900 @default.
- W3012132823 hasConceptScore W3012132823C143409427 @default.
- W3012132823 hasConceptScore W3012132823C144301174 @default.
- W3012132823 hasConceptScore W3012132823C164705383 @default.
- W3012132823 hasConceptScore W3012132823C2776008845 @default.
- W3012132823 hasConceptScore W3012132823C2776331378 @default.
- W3012132823 hasConceptScore W3012132823C2778198053 @default.
- W3012132823 hasConceptScore W3012132823C2778646171 @default.
- W3012132823 hasConceptScore W3012132823C2780074459 @default.
- W3012132823 hasConceptScore W3012132823C38180746 @default.
- W3012132823 hasConceptScore W3012132823C71924100 @default.
- W3012132823 hasConceptScore W3012132823C78085059 @default.
- W3012132823 hasIssue "13" @default.
- W3012132823 hasLocation W30121328231 @default.
- W3012132823 hasOpenAccess W3012132823 @default.
- W3012132823 hasPrimaryLocation W30121328231 @default.
- W3012132823 hasRelatedWork W2118761609 @default.
- W3012132823 hasRelatedWork W2137755055 @default.
- W3012132823 hasRelatedWork W2144432872 @default.
- W3012132823 hasRelatedWork W2393134092 @default.
- W3012132823 hasRelatedWork W2547046759 @default.
- W3012132823 hasRelatedWork W2808781880 @default.