Matches in SemOpenAlex for { <https://semopenalex.org/work/W3012137738> ?p ?o ?g. }
- W3012137738 endingPage "WA86" @default.
- W3012137738 startingPage "WA77" @default.
- W3012137738 abstract "Depicting geologic sequences from 3D seismic surveying is of significant value to subsurface reservoir exploration, but it is usually time- and labor-intensive for manual interpretation by experienced seismic interpreters. We have developed a semisupervised workflow for efficient seismic stratigraphy interpretation by using the state-of-the-art deep convolutional neural networks (CNNs). Specifically, the workflow consists of two components: (1) seismic feature self-learning (SFSL) and (2) stratigraphy model building (SMB), each of which is formulated as a deep CNN. Whereas the SMB is supervised by knowledge from domain experts and the associated CNN uses a similar network architecture typically used in image segmentation, the SFSL is designed as an unsupervised process and thus can be performed backstage while an expert prepares the training labels for the SMB CNN. Compared with conventional approaches, the our workflow is superior in two aspects. First, the SMB CNN, initialized by the SFSL CNN, successfully inherits the prior knowledge of the seismic features in the target seismic data. Therefore, it becomes feasible for completing the supervised training of the SMB CNN more efficiently using only a small amount of training data, for example, less than 0.1% of the available seismic data as demonstrated in this paper. Second, for the convenience of seismic experts in translating their domain knowledge into training labels, our workflow is designed to be applicable to three scenarios, trace-wise, paintbrushing, and full-sectional annotation. The performance of the new workflow is well-verified through application to three real seismic data sets. We conclude that the new workflow is not only capable of providing robust stratigraphy interpretation for a given seismic volume, but it also holds great potential for other problems in seismic data analysis." @default.
- W3012137738 created "2020-03-23" @default.
- W3012137738 creator A5008909214 @default.
- W3012137738 creator A5047629251 @default.
- W3012137738 creator A5063881188 @default.
- W3012137738 creator A5079173460 @default.
- W3012137738 date "2020-04-30" @default.
- W3012137738 modified "2023-09-30" @default.
- W3012137738 title "Seismic stratigraphy interpretation by deep convolutional neural networks: A semisupervised workflow" @default.
- W3012137738 cites W2019570509 @default.
- W3012137738 cites W2079277635 @default.
- W3012137738 cites W2144796873 @default.
- W3012137738 cites W2153259962 @default.
- W3012137738 cites W2325904566 @default.
- W3012137738 cites W2338271170 @default.
- W3012137738 cites W2398192286 @default.
- W3012137738 cites W2592421213 @default.
- W3012137738 cites W2592517375 @default.
- W3012137738 cites W2774014017 @default.
- W3012137738 cites W2794057883 @default.
- W3012137738 cites W2807001101 @default.
- W3012137738 cites W2808760859 @default.
- W3012137738 cites W2886357286 @default.
- W3012137738 cites W2911424749 @default.
- W3012137738 cites W2947853264 @default.
- W3012137738 cites W2964255494 @default.
- W3012137738 cites W2969722825 @default.
- W3012137738 cites W4234222608 @default.
- W3012137738 cites W4298074858 @default.
- W3012137738 cites W4362597616 @default.
- W3012137738 doi "https://doi.org/10.1190/geo2019-0433.1" @default.
- W3012137738 hasPublicationYear "2020" @default.
- W3012137738 type Work @default.
- W3012137738 sameAs 3012137738 @default.
- W3012137738 citedByCount "44" @default.
- W3012137738 countsByYear W30121377382020 @default.
- W3012137738 countsByYear W30121377382021 @default.
- W3012137738 countsByYear W30121377382022 @default.
- W3012137738 countsByYear W30121377382023 @default.
- W3012137738 crossrefType "journal-article" @default.
- W3012137738 hasAuthorship W3012137738A5008909214 @default.
- W3012137738 hasAuthorship W3012137738A5047629251 @default.
- W3012137738 hasAuthorship W3012137738A5063881188 @default.
- W3012137738 hasAuthorship W3012137738A5079173460 @default.
- W3012137738 hasConcept C108583219 @default.
- W3012137738 hasConcept C109281948 @default.
- W3012137738 hasConcept C119857082 @default.
- W3012137738 hasConcept C127313418 @default.
- W3012137738 hasConcept C134306372 @default.
- W3012137738 hasConcept C138885662 @default.
- W3012137738 hasConcept C154945302 @default.
- W3012137738 hasConcept C165205528 @default.
- W3012137738 hasConcept C177212765 @default.
- W3012137738 hasConcept C207685749 @default.
- W3012137738 hasConcept C2776401178 @default.
- W3012137738 hasConcept C33923547 @default.
- W3012137738 hasConcept C36503486 @default.
- W3012137738 hasConcept C41008148 @default.
- W3012137738 hasConcept C41895202 @default.
- W3012137738 hasConcept C77088390 @default.
- W3012137738 hasConcept C77928131 @default.
- W3012137738 hasConcept C81363708 @default.
- W3012137738 hasConcept C89600930 @default.
- W3012137738 hasConceptScore W3012137738C108583219 @default.
- W3012137738 hasConceptScore W3012137738C109281948 @default.
- W3012137738 hasConceptScore W3012137738C119857082 @default.
- W3012137738 hasConceptScore W3012137738C127313418 @default.
- W3012137738 hasConceptScore W3012137738C134306372 @default.
- W3012137738 hasConceptScore W3012137738C138885662 @default.
- W3012137738 hasConceptScore W3012137738C154945302 @default.
- W3012137738 hasConceptScore W3012137738C165205528 @default.
- W3012137738 hasConceptScore W3012137738C177212765 @default.
- W3012137738 hasConceptScore W3012137738C207685749 @default.
- W3012137738 hasConceptScore W3012137738C2776401178 @default.
- W3012137738 hasConceptScore W3012137738C33923547 @default.
- W3012137738 hasConceptScore W3012137738C36503486 @default.
- W3012137738 hasConceptScore W3012137738C41008148 @default.
- W3012137738 hasConceptScore W3012137738C41895202 @default.
- W3012137738 hasConceptScore W3012137738C77088390 @default.
- W3012137738 hasConceptScore W3012137738C77928131 @default.
- W3012137738 hasConceptScore W3012137738C81363708 @default.
- W3012137738 hasConceptScore W3012137738C89600930 @default.
- W3012137738 hasIssue "4" @default.
- W3012137738 hasLocation W30121377381 @default.
- W3012137738 hasOpenAccess W3012137738 @default.
- W3012137738 hasPrimaryLocation W30121377381 @default.
- W3012137738 hasRelatedWork W2731899572 @default.
- W3012137738 hasRelatedWork W2790662084 @default.
- W3012137738 hasRelatedWork W2999805992 @default.
- W3012137738 hasRelatedWork W3116150086 @default.
- W3012137738 hasRelatedWork W3133861977 @default.
- W3012137738 hasRelatedWork W4200173597 @default.
- W3012137738 hasRelatedWork W4291897433 @default.
- W3012137738 hasRelatedWork W4312417841 @default.
- W3012137738 hasRelatedWork W4321369474 @default.
- W3012137738 hasRelatedWork W4380075502 @default.
- W3012137738 hasVolume "85" @default.
- W3012137738 isParatext "false" @default.