Matches in SemOpenAlex for { <https://semopenalex.org/work/W3012155603> ?p ?o ?g. }
- W3012155603 endingPage "120" @default.
- W3012155603 startingPage "98" @default.
- W3012155603 abstract "Intertidal flats lying as a buffer zone between land and sea provide critical services including protection against storm surges and coastal flooding. These environments are characterized by a continuous redistribution of sediment and changes in topography. Sea level rise, anthropogenic pressures, and their related stressors have a considerable impact on these areas and are expected to put them under more stress; hence the increased need for frequent and updated topography maps. Comparing to traditional surveying approaches, spaceborne remote sensing is able to provide topography maps more frequently with a lower cost and a higher coverage. The latter is currently considered as an established tool for measuring intertidal topography. In this study, an improved approach of the waterline method was developed to derive intertidal Digital Elevation Models (DEMs). The changes include a faster, more efficient and quasi-automatic detection and post-processing of waterlines. The edge detection technique consists in combining a k-means based segmentation and an active contouring procedure. This method was designed to generate closed contours in order to enable an automatization of the post-processing of the extracted waterlines. The waterlines were extracted from Sentinel-1 and Sentinel-2 images for two bays located on the French Coast: the Arcachon lagoon and the Bay of Veys. DEMs were generated for the Arcachon Bay between 2015 and 2018, and for the Bay of Veys between 2016 and 2018 using satellite acquisitions made during summer (low storm activity period). The comparison of the generated DEMs with lidar observations showed an error of about 19–25 cm. This study also demonstrated that the waterline method applied to Sentinel images is suitable for monitoring the morpho-sedimentary evolution in intertidal areas. By comparing the DEMs generated between 2016 and 2018, the Arcachon Bay and the Bay of Veys experienced net volume losses of 1.12 × 106 m3 and 0.70 × 106 m3 respectively. The generated DEMs provide useful and needed information for several scientific applications (e.g., sediment balance, hydrodynamic modelling), but also for authorities and stakeholders for coastal management and implementation of ecosystem protection policies." @default.
- W3012155603 created "2020-03-23" @default.
- W3012155603 creator A5001858727 @default.
- W3012155603 creator A5003487948 @default.
- W3012155603 creator A5057347564 @default.
- W3012155603 date "2020-05-01" @default.
- W3012155603 modified "2023-10-17" @default.
- W3012155603 title "Intertidal topography mapping using the waterline method from Sentinel-1 & -2 images: The examples of Arcachon and Veys Bays in France" @default.
- W3012155603 cites W1822681744 @default.
- W3012155603 cites W1984670836 @default.
- W3012155603 cites W1997436078 @default.
- W3012155603 cites W2000972900 @default.
- W3012155603 cites W2005795636 @default.
- W3012155603 cites W2007873570 @default.
- W3012155603 cites W2010960730 @default.
- W3012155603 cites W2014575069 @default.
- W3012155603 cites W2022060803 @default.
- W3012155603 cites W2024697317 @default.
- W3012155603 cites W2025971659 @default.
- W3012155603 cites W2028132054 @default.
- W3012155603 cites W2030785199 @default.
- W3012155603 cites W2032788463 @default.
- W3012155603 cites W2036524212 @default.
- W3012155603 cites W2047803006 @default.
- W3012155603 cites W2052943666 @default.
- W3012155603 cites W2056435747 @default.
- W3012155603 cites W2056537532 @default.
- W3012155603 cites W2069086849 @default.
- W3012155603 cites W2077509829 @default.
- W3012155603 cites W2093318500 @default.
- W3012155603 cites W2094041233 @default.
- W3012155603 cites W2107774476 @default.
- W3012155603 cites W2109221485 @default.
- W3012155603 cites W2114666101 @default.
- W3012155603 cites W2116040950 @default.
- W3012155603 cites W2116691101 @default.
- W3012155603 cites W2120619026 @default.
- W3012155603 cites W2138998447 @default.
- W3012155603 cites W2144494233 @default.
- W3012155603 cites W2151143810 @default.
- W3012155603 cites W2156657521 @default.
- W3012155603 cites W2157205742 @default.
- W3012155603 cites W2160434086 @default.
- W3012155603 cites W2163771197 @default.
- W3012155603 cites W2167595718 @default.
- W3012155603 cites W2169171698 @default.
- W3012155603 cites W2534364101 @default.
- W3012155603 cites W2558577900 @default.
- W3012155603 cites W2596808575 @default.
- W3012155603 cites W2621347924 @default.
- W3012155603 cites W2791686555 @default.
- W3012155603 cites W2793987589 @default.
- W3012155603 cites W2800515664 @default.
- W3012155603 cites W2801986188 @default.
- W3012155603 cites W2903592875 @default.
- W3012155603 cites W2912827173 @default.
- W3012155603 cites W2940723411 @default.
- W3012155603 cites W2958524612 @default.
- W3012155603 cites W2976480531 @default.
- W3012155603 cites W4242056788 @default.
- W3012155603 doi "https://doi.org/10.1016/j.isprsjprs.2020.03.003" @default.
- W3012155603 hasPublicationYear "2020" @default.
- W3012155603 type Work @default.
- W3012155603 sameAs 3012155603 @default.
- W3012155603 citedByCount "27" @default.
- W3012155603 countsByYear W30121556032021 @default.
- W3012155603 countsByYear W30121556032022 @default.
- W3012155603 countsByYear W30121556032023 @default.
- W3012155603 crossrefType "journal-article" @default.
- W3012155603 hasAuthorship W3012155603A5001858727 @default.
- W3012155603 hasAuthorship W3012155603A5003487948 @default.
- W3012155603 hasAuthorship W3012155603A5057347564 @default.
- W3012155603 hasBestOaLocation W30121556031 @default.
- W3012155603 hasConcept C105306849 @default.
- W3012155603 hasConcept C111368507 @default.
- W3012155603 hasConcept C114793014 @default.
- W3012155603 hasConcept C115880899 @default.
- W3012155603 hasConcept C127313418 @default.
- W3012155603 hasConcept C161064598 @default.
- W3012155603 hasConcept C16156107 @default.
- W3012155603 hasConcept C174580923 @default.
- W3012155603 hasConcept C22818535 @default.
- W3012155603 hasConcept C2778900803 @default.
- W3012155603 hasConcept C2816523 @default.
- W3012155603 hasConcept C37423430 @default.
- W3012155603 hasConcept C39432304 @default.
- W3012155603 hasConcept C62649853 @default.
- W3012155603 hasConcept C65589250 @default.
- W3012155603 hasConceptScore W3012155603C105306849 @default.
- W3012155603 hasConceptScore W3012155603C111368507 @default.
- W3012155603 hasConceptScore W3012155603C114793014 @default.
- W3012155603 hasConceptScore W3012155603C115880899 @default.
- W3012155603 hasConceptScore W3012155603C127313418 @default.
- W3012155603 hasConceptScore W3012155603C161064598 @default.
- W3012155603 hasConceptScore W3012155603C16156107 @default.
- W3012155603 hasConceptScore W3012155603C174580923 @default.
- W3012155603 hasConceptScore W3012155603C22818535 @default.
- W3012155603 hasConceptScore W3012155603C2778900803 @default.