Matches in SemOpenAlex for { <https://semopenalex.org/work/W3012258198> ?p ?o ?g. }
- W3012258198 abstract "Image registration and segmentation are the two most studied problems in medical image analysis. Deep learning algorithms have recently gained a lot of attention due to their success and state of the art results in varieties of problems and communities. In this paper, we propose a novel, efficient, and multi-task algorithm that addresses the problems of image registration and brain tumor segmentation jointly. Our method exploits the dependencies between these tasks through a natural coupling of their interdependencies during inference. In particular, constraints in correspondences are relaxed within the registration objective function in the regions of tumors, that are automatically recovered resulting in tumor volume preservation. We evaluated the performance of our formulation both quantitatively and qualitatively for registration and segmentation problems on two publicly available datasets (BraTS 2018 and OASIS 3), reporting competitive results with other recent state of the art methods." @default.
- W3012258198 created "2020-03-23" @default.
- W3012258198 creator A5001047409 @default.
- W3012258198 creator A5002452272 @default.
- W3012258198 creator A5014829112 @default.
- W3012258198 creator A5015564973 @default.
- W3012258198 creator A5032864963 @default.
- W3012258198 creator A5044848402 @default.
- W3012258198 creator A5052371256 @default.
- W3012258198 creator A5055669549 @default.
- W3012258198 creator A5055985586 @default.
- W3012258198 creator A5064662363 @default.
- W3012258198 creator A5066077932 @default.
- W3012258198 creator A5069324105 @default.
- W3012258198 creator A5070081715 @default.
- W3012258198 creator A5077223134 @default.
- W3012258198 date "2020-03-20" @default.
- W3012258198 modified "2023-10-14" @default.
- W3012258198 title "Deep Learning-Based Concurrent Brain Registration and Tumor Segmentation" @default.
- W3012258198 cites W1565207862 @default.
- W3012258198 cites W1594440326 @default.
- W3012258198 cites W1641498739 @default.
- W3012258198 cites W1970928383 @default.
- W3012258198 cites W1978662219 @default.
- W3012258198 cites W1980114101 @default.
- W3012258198 cites W1987937542 @default.
- W3012258198 cites W2037316890 @default.
- W3012258198 cites W2060774914 @default.
- W3012258198 cites W2079615115 @default.
- W3012258198 cites W2092276341 @default.
- W3012258198 cites W2097764517 @default.
- W3012258198 cites W2104958914 @default.
- W3012258198 cites W2107493493 @default.
- W3012258198 cites W2109859915 @default.
- W3012258198 cites W2115167851 @default.
- W3012258198 cites W2124260444 @default.
- W3012258198 cites W2133287637 @default.
- W3012258198 cites W2233100538 @default.
- W3012258198 cites W2431547411 @default.
- W3012258198 cites W2599895745 @default.
- W3012258198 cites W2734349601 @default.
- W3012258198 cites W2751069891 @default.
- W3012258198 cites W2767623272 @default.
- W3012258198 cites W2769204493 @default.
- W3012258198 cites W2794372310 @default.
- W3012258198 cites W2799913653 @default.
- W3012258198 cites W2807725536 @default.
- W3012258198 cites W2888638783 @default.
- W3012258198 cites W2911621546 @default.
- W3012258198 cites W2951533726 @default.
- W3012258198 cites W2962914239 @default.
- W3012258198 cites W2963351448 @default.
- W3012258198 cites W4229508619 @default.
- W3012258198 cites W78979540 @default.
- W3012258198 doi "https://doi.org/10.3389/fncom.2020.00017" @default.
- W3012258198 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7100603" @default.
- W3012258198 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32265680" @default.
- W3012258198 hasPublicationYear "2020" @default.
- W3012258198 type Work @default.
- W3012258198 sameAs 3012258198 @default.
- W3012258198 citedByCount "26" @default.
- W3012258198 countsByYear W30122581982020 @default.
- W3012258198 countsByYear W30122581982021 @default.
- W3012258198 countsByYear W30122581982022 @default.
- W3012258198 countsByYear W30122581982023 @default.
- W3012258198 crossrefType "journal-article" @default.
- W3012258198 hasAuthorship W3012258198A5001047409 @default.
- W3012258198 hasAuthorship W3012258198A5002452272 @default.
- W3012258198 hasAuthorship W3012258198A5014829112 @default.
- W3012258198 hasAuthorship W3012258198A5015564973 @default.
- W3012258198 hasAuthorship W3012258198A5032864963 @default.
- W3012258198 hasAuthorship W3012258198A5044848402 @default.
- W3012258198 hasAuthorship W3012258198A5052371256 @default.
- W3012258198 hasAuthorship W3012258198A5055669549 @default.
- W3012258198 hasAuthorship W3012258198A5055985586 @default.
- W3012258198 hasAuthorship W3012258198A5064662363 @default.
- W3012258198 hasAuthorship W3012258198A5066077932 @default.
- W3012258198 hasAuthorship W3012258198A5069324105 @default.
- W3012258198 hasAuthorship W3012258198A5070081715 @default.
- W3012258198 hasAuthorship W3012258198A5077223134 @default.
- W3012258198 hasBestOaLocation W30122581981 @default.
- W3012258198 hasConcept C108583219 @default.
- W3012258198 hasConcept C115961682 @default.
- W3012258198 hasConcept C119857082 @default.
- W3012258198 hasConcept C124504099 @default.
- W3012258198 hasConcept C153180895 @default.
- W3012258198 hasConcept C154945302 @default.
- W3012258198 hasConcept C162324750 @default.
- W3012258198 hasConcept C165696696 @default.
- W3012258198 hasConcept C166704113 @default.
- W3012258198 hasConcept C187736073 @default.
- W3012258198 hasConcept C2776214188 @default.
- W3012258198 hasConcept C2780451532 @default.
- W3012258198 hasConcept C31972630 @default.
- W3012258198 hasConcept C38652104 @default.
- W3012258198 hasConcept C41008148 @default.
- W3012258198 hasConcept C89600930 @default.
- W3012258198 hasConceptScore W3012258198C108583219 @default.
- W3012258198 hasConceptScore W3012258198C115961682 @default.
- W3012258198 hasConceptScore W3012258198C119857082 @default.