Matches in SemOpenAlex for { <https://semopenalex.org/work/W3012390930> ?p ?o ?g. }
- W3012390930 abstract "Abstract Background Ventilator-associated pneumonia (VAP) is a significant cause of mortality in the intensive care unit. Early diagnosis of VAP is important to provide appropriate treatment and reduce mortality. Developing a noninvasive and highly accurate diagnostic method is important. The invention of electronic sensors has been applied to analyze the volatile organic compounds in breath to detect VAP using a machine learning technique. However, the process of building an algorithm is usually unclear and prevents physicians from applying the artificial intelligence technique in clinical practice. Clear processes of model building and assessing accuracy are warranted. The objective of this study was to develop a breath test for VAP with a standardized protocol for a machine learning technique. Methods We conducted a case-control study. This study enrolled subjects in an intensive care unit of a hospital in southern Taiwan from February 2017 to June 2019. We recruited patients with VAP as the case group and ventilated patients without pneumonia as the control group. We collected exhaled breath and analyzed the electric resistance changes of 32 sensor arrays of an electronic nose. We split the data into a set for training algorithms and a set for testing. We applied eight machine learning algorithms to build prediction models, improving model performance and providing an estimated diagnostic accuracy. Results A total of 33 cases and 26 controls were used in the final analysis. Using eight machine learning algorithms, the mean accuracy in the testing set was 0.81 ± 0.04, the sensitivity was 0.79 ± 0.08, the specificity was 0.83 ± 0.00, the positive predictive value was 0.85 ± 0.02, the negative predictive value was 0.77 ± 0.06, and the area under the receiver operator characteristic curves was 0.85 ± 0.04. The mean kappa value in the testing set was 0.62 ± 0.08, which suggested good agreement. Conclusions There was good accuracy in detecting VAP by sensor array and machine learning techniques. Artificial intelligence has the potential to assist the physician in making a clinical diagnosis. Clear protocols for data processing and the modeling procedure needed to increase generalizability." @default.
- W3012390930 created "2020-03-23" @default.
- W3012390930 creator A5007510055 @default.
- W3012390930 creator A5008630715 @default.
- W3012390930 creator A5091586049 @default.
- W3012390930 date "2020-02-07" @default.
- W3012390930 modified "2023-10-18" @default.
- W3012390930 title "Diagnosis of ventilator-associated pneumonia using electronic nose sensor array signals: solutions to improve the application of machine learning in respiratory research" @default.
- W3012390930 cites W1500623317 @default.
- W3012390930 cites W1513618424 @default.
- W3012390930 cites W1768257245 @default.
- W3012390930 cites W1831050183 @default.
- W3012390930 cites W1964421503 @default.
- W3012390930 cites W1974091107 @default.
- W3012390930 cites W1983802901 @default.
- W3012390930 cites W1984245096 @default.
- W3012390930 cites W2001085980 @default.
- W3012390930 cites W2005903686 @default.
- W3012390930 cites W2006617902 @default.
- W3012390930 cites W2009569496 @default.
- W3012390930 cites W2019309046 @default.
- W3012390930 cites W2035540321 @default.
- W3012390930 cites W2059941831 @default.
- W3012390930 cites W2060866626 @default.
- W3012390930 cites W2067430497 @default.
- W3012390930 cites W2068702895 @default.
- W3012390930 cites W2069703811 @default.
- W3012390930 cites W2070418581 @default.
- W3012390930 cites W2072012277 @default.
- W3012390930 cites W2076289203 @default.
- W3012390930 cites W2081124556 @default.
- W3012390930 cites W2083064028 @default.
- W3012390930 cites W2084194943 @default.
- W3012390930 cites W2110001112 @default.
- W3012390930 cites W2114311291 @default.
- W3012390930 cites W2122711583 @default.
- W3012390930 cites W2125699736 @default.
- W3012390930 cites W2148987355 @default.
- W3012390930 cites W2149689328 @default.
- W3012390930 cites W2152344036 @default.
- W3012390930 cites W2152497214 @default.
- W3012390930 cites W2159946145 @default.
- W3012390930 cites W2167240759 @default.
- W3012390930 cites W2167385770 @default.
- W3012390930 cites W2218435475 @default.
- W3012390930 cites W2257382709 @default.
- W3012390930 cites W2410217149 @default.
- W3012390930 cites W2419906873 @default.
- W3012390930 cites W2554140915 @default.
- W3012390930 cites W2664267452 @default.
- W3012390930 cites W2888855391 @default.
- W3012390930 cites W2898511110 @default.
- W3012390930 cites W2911964244 @default.
- W3012390930 cites W2930379364 @default.
- W3012390930 cites W2937511596 @default.
- W3012390930 cites W2989173305 @default.
- W3012390930 cites W82055556 @default.
- W3012390930 doi "https://doi.org/10.1186/s12931-020-1285-6" @default.
- W3012390930 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7006122" @default.
- W3012390930 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32033607" @default.
- W3012390930 hasPublicationYear "2020" @default.
- W3012390930 type Work @default.
- W3012390930 sameAs 3012390930 @default.
- W3012390930 citedByCount "34" @default.
- W3012390930 countsByYear W30123909302020 @default.
- W3012390930 countsByYear W30123909302021 @default.
- W3012390930 countsByYear W30123909302022 @default.
- W3012390930 countsByYear W30123909302023 @default.
- W3012390930 crossrefType "journal-article" @default.
- W3012390930 hasAuthorship W3012390930A5007510055 @default.
- W3012390930 hasAuthorship W3012390930A5008630715 @default.
- W3012390930 hasAuthorship W3012390930A5091586049 @default.
- W3012390930 hasBestOaLocation W30123909301 @default.
- W3012390930 hasConcept C119857082 @default.
- W3012390930 hasConcept C126322002 @default.
- W3012390930 hasConcept C154945302 @default.
- W3012390930 hasConcept C169903167 @default.
- W3012390930 hasConcept C177713679 @default.
- W3012390930 hasConcept C194828623 @default.
- W3012390930 hasConcept C23895516 @default.
- W3012390930 hasConcept C2776376669 @default.
- W3012390930 hasConcept C2777184939 @default.
- W3012390930 hasConcept C2777914695 @default.
- W3012390930 hasConcept C2987404301 @default.
- W3012390930 hasConcept C41008148 @default.
- W3012390930 hasConcept C58471807 @default.
- W3012390930 hasConcept C71924100 @default.
- W3012390930 hasConceptScore W3012390930C119857082 @default.
- W3012390930 hasConceptScore W3012390930C126322002 @default.
- W3012390930 hasConceptScore W3012390930C154945302 @default.
- W3012390930 hasConceptScore W3012390930C169903167 @default.
- W3012390930 hasConceptScore W3012390930C177713679 @default.
- W3012390930 hasConceptScore W3012390930C194828623 @default.
- W3012390930 hasConceptScore W3012390930C23895516 @default.
- W3012390930 hasConceptScore W3012390930C2776376669 @default.
- W3012390930 hasConceptScore W3012390930C2777184939 @default.
- W3012390930 hasConceptScore W3012390930C2777914695 @default.
- W3012390930 hasConceptScore W3012390930C2987404301 @default.
- W3012390930 hasConceptScore W3012390930C41008148 @default.
- W3012390930 hasConceptScore W3012390930C58471807 @default.