Matches in SemOpenAlex for { <https://semopenalex.org/work/W3012414209> ?p ?o ?g. }
- W3012414209 endingPage "104751" @default.
- W3012414209 startingPage "104751" @default.
- W3012414209 abstract "Imaging Earth structure or seismic sources from seismic data involves minimizing a target misfit function, and is commonly solved through gradient-based optimization. The adjoint-state method has been developed to compute the gradient efficiently; however, its implementation can be time-consuming and difficult. We develop a general seismic inversion framework to calculate gradients using reverse-mode automatic differentiation. The central idea is that adjoint-state methods and reverse-mode automatic differentiation are mathematically equivalent. The mapping between numerical PDE simulation and deep learning allows us to build a seismic inverse modeling library, ADSeismic, based on deep learning frameworks, which supports high performance reverse-mode automatic differentiation on CPUs and GPUs. We demonstrate the performance of ADSeismic on inverse problems related to velocity model estimation, rupture imaging, earthquake location, and source time function retrieval. ADSeismic has the potential to solve a wide variety of inverse modeling applications within a unified framework." @default.
- W3012414209 created "2020-03-23" @default.
- W3012414209 creator A5061822097 @default.
- W3012414209 creator A5062619631 @default.
- W3012414209 creator A5070811279 @default.
- W3012414209 creator A5084849254 @default.
- W3012414209 date "2021-06-01" @default.
- W3012414209 modified "2023-10-12" @default.
- W3012414209 title "A general approach to seismic inversion with automatic differentiation" @default.
- W3012414209 cites W1498436455 @default.
- W3012414209 cites W1659874525 @default.
- W3012414209 cites W1790833911 @default.
- W3012414209 cites W1918897055 @default.
- W3012414209 cites W1967134278 @default.
- W3012414209 cites W1969289728 @default.
- W3012414209 cites W1975139914 @default.
- W3012414209 cites W1975900931 @default.
- W3012414209 cites W1981914807 @default.
- W3012414209 cites W1994595608 @default.
- W3012414209 cites W2005126631 @default.
- W3012414209 cites W2007787802 @default.
- W3012414209 cites W2009552164 @default.
- W3012414209 cites W2014782452 @default.
- W3012414209 cites W2044724034 @default.
- W3012414209 cites W2069383344 @default.
- W3012414209 cites W2076966703 @default.
- W3012414209 cites W2092957692 @default.
- W3012414209 cites W2094088790 @default.
- W3012414209 cites W2098287859 @default.
- W3012414209 cites W2099857446 @default.
- W3012414209 cites W2100245965 @default.
- W3012414209 cites W2111983187 @default.
- W3012414209 cites W2122938374 @default.
- W3012414209 cites W2125916088 @default.
- W3012414209 cites W2128957619 @default.
- W3012414209 cites W2129887242 @default.
- W3012414209 cites W2137913073 @default.
- W3012414209 cites W2139381422 @default.
- W3012414209 cites W2141396940 @default.
- W3012414209 cites W2142063750 @default.
- W3012414209 cites W2146843890 @default.
- W3012414209 cites W2159154457 @default.
- W3012414209 cites W2171045426 @default.
- W3012414209 cites W2189576261 @default.
- W3012414209 cites W2275835358 @default.
- W3012414209 cites W2280554568 @default.
- W3012414209 cites W2345772522 @default.
- W3012414209 cites W2410410974 @default.
- W3012414209 cites W2586372192 @default.
- W3012414209 cites W2742540029 @default.
- W3012414209 cites W2791194390 @default.
- W3012414209 cites W2797163994 @default.
- W3012414209 cites W2888730305 @default.
- W3012414209 cites W2996008180 @default.
- W3012414209 cites W3032032710 @default.
- W3012414209 cites W4240464597 @default.
- W3012414209 doi "https://doi.org/10.1016/j.cageo.2021.104751" @default.
- W3012414209 hasPublicationYear "2021" @default.
- W3012414209 type Work @default.
- W3012414209 sameAs 3012414209 @default.
- W3012414209 citedByCount "25" @default.
- W3012414209 countsByYear W30124142092020 @default.
- W3012414209 countsByYear W30124142092021 @default.
- W3012414209 countsByYear W30124142092022 @default.
- W3012414209 countsByYear W30124142092023 @default.
- W3012414209 crossrefType "journal-article" @default.
- W3012414209 hasAuthorship W3012414209A5061822097 @default.
- W3012414209 hasAuthorship W3012414209A5062619631 @default.
- W3012414209 hasAuthorship W3012414209A5070811279 @default.
- W3012414209 hasAuthorship W3012414209A5084849254 @default.
- W3012414209 hasBestOaLocation W30124142091 @default.
- W3012414209 hasConcept C108583219 @default.
- W3012414209 hasConcept C111919701 @default.
- W3012414209 hasConcept C11413529 @default.
- W3012414209 hasConcept C127313418 @default.
- W3012414209 hasConcept C133512626 @default.
- W3012414209 hasConcept C134306372 @default.
- W3012414209 hasConcept C135252773 @default.
- W3012414209 hasConcept C14036430 @default.
- W3012414209 hasConcept C154945302 @default.
- W3012414209 hasConcept C159737794 @default.
- W3012414209 hasConcept C165205528 @default.
- W3012414209 hasConcept C1893757 @default.
- W3012414209 hasConcept C207467116 @default.
- W3012414209 hasConcept C2524010 @default.
- W3012414209 hasConcept C33923547 @default.
- W3012414209 hasConcept C39267094 @default.
- W3012414209 hasConcept C41008148 @default.
- W3012414209 hasConcept C45374587 @default.
- W3012414209 hasConcept C459310 @default.
- W3012414209 hasConcept C48677424 @default.
- W3012414209 hasConcept C77928131 @default.
- W3012414209 hasConcept C78458016 @default.
- W3012414209 hasConcept C79675319 @default.
- W3012414209 hasConcept C8058405 @default.
- W3012414209 hasConcept C86803240 @default.
- W3012414209 hasConceptScore W3012414209C108583219 @default.
- W3012414209 hasConceptScore W3012414209C111919701 @default.