Matches in SemOpenAlex for { <https://semopenalex.org/work/W3012513984> ?p ?o ?g. }
- W3012513984 endingPage "168" @default.
- W3012513984 startingPage "119" @default.
- W3012513984 abstract "Abstract The potential energy surface (PES), the mapping from high-dimensional space of atomic positions to the free energy level of a material system, is important for building structure–property relationships at the atomistic level. The PES can be constructed by calculating the system energy with first-principles approaches such as density functional theory (DFT). Searching for local minima, saddle points, and minimum energy paths (MEPs) on the PES is the essential task in functional materials design. But it is very challenging because of the curse of dimensionality and the numerical approximation errors involved in constructing the PES. In this chapter, a first-principles local minima and saddle points searching method based on a scalable Gaussian process (GP), called GP-DFT, is described. The searching algorithm is performed based on the DFT calculation and a concurrent searching method for MEPs assisted by the GP surrogate model that approximates the PES. The concurrent searching method is able to locate multiple MEPs on the PES simultaneously. The surrogate model is composed of multiple local GPs, where each corresponds to a subset of observations in the complete dataset. The potential energy is then predicted using a weighted linear average scheme of the posterior means for each local GP. The scalable GP scheme is developed to alleviate the computational bottleneck of the classical GP method. The uncertainty associated with the potential energy prediction is quantified through the posterior variance of the surrogate model. Two computational materials examples of studying hydrogen embrittlement in Fe and FeTi systems are used to demonstrate the scalability and efficiency of the proposed searching algorithm." @default.
- W3012513984 created "2020-03-23" @default.
- W3012513984 creator A5054333545 @default.
- W3012513984 creator A5061857561 @default.
- W3012513984 creator A5062944544 @default.
- W3012513984 creator A5064659779 @default.
- W3012513984 date "2020-01-01" @default.
- W3012513984 modified "2023-10-16" @default.
- W3012513984 title "Data-driven acceleration of first-principles saddle point and local minimum search based on scalable Gaussian processes" @default.
- W3012513984 cites W1524392826 @default.
- W3012513984 cites W1948480439 @default.
- W3012513984 cites W1966025389 @default.
- W3012513984 cites W1966601137 @default.
- W3012513984 cites W1972323103 @default.
- W3012513984 cites W1975319829 @default.
- W3012513984 cites W1980016781 @default.
- W3012513984 cites W1982497888 @default.
- W3012513984 cites W1982886636 @default.
- W3012513984 cites W1983132551 @default.
- W3012513984 cites W1983488231 @default.
- W3012513984 cites W1984753492 @default.
- W3012513984 cites W1985864737 @default.
- W3012513984 cites W1986614779 @default.
- W3012513984 cites W1988675445 @default.
- W3012513984 cites W1988681909 @default.
- W3012513984 cites W1997054314 @default.
- W3012513984 cites W1998141434 @default.
- W3012513984 cites W1998206772 @default.
- W3012513984 cites W2001694382 @default.
- W3012513984 cites W2002465357 @default.
- W3012513984 cites W2004751437 @default.
- W3012513984 cites W2005252805 @default.
- W3012513984 cites W2006290293 @default.
- W3012513984 cites W2007395042 @default.
- W3012513984 cites W2007663400 @default.
- W3012513984 cites W2007864935 @default.
- W3012513984 cites W2012876210 @default.
- W3012513984 cites W2013412690 @default.
- W3012513984 cites W2013671650 @default.
- W3012513984 cites W2017485972 @default.
- W3012513984 cites W2018044188 @default.
- W3012513984 cites W2020109851 @default.
- W3012513984 cites W2024745355 @default.
- W3012513984 cites W2027801610 @default.
- W3012513984 cites W2027973545 @default.
- W3012513984 cites W2028872616 @default.
- W3012513984 cites W2029413789 @default.
- W3012513984 cites W2029699845 @default.
- W3012513984 cites W2031430816 @default.
- W3012513984 cites W2032281096 @default.
- W3012513984 cites W2032380345 @default.
- W3012513984 cites W2034382532 @default.
- W3012513984 cites W2035223648 @default.
- W3012513984 cites W2036798805 @default.
- W3012513984 cites W2040249893 @default.
- W3012513984 cites W2041301499 @default.
- W3012513984 cites W2041792275 @default.
- W3012513984 cites W2042269042 @default.
- W3012513984 cites W2044002623 @default.
- W3012513984 cites W2046273913 @default.
- W3012513984 cites W2051763485 @default.
- W3012513984 cites W2054498139 @default.
- W3012513984 cites W2054754597 @default.
- W3012513984 cites W2055139281 @default.
- W3012513984 cites W2056673717 @default.
- W3012513984 cites W2058883719 @default.
- W3012513984 cites W2059605663 @default.
- W3012513984 cites W2060095124 @default.
- W3012513984 cites W2061163110 @default.
- W3012513984 cites W2064719047 @default.
- W3012513984 cites W2065251521 @default.
- W3012513984 cites W2066101367 @default.
- W3012513984 cites W2073246783 @default.
- W3012513984 cites W2073996332 @default.
- W3012513984 cites W2076642960 @default.
- W3012513984 cites W2078187545 @default.
- W3012513984 cites W2079105963 @default.
- W3012513984 cites W2081567253 @default.
- W3012513984 cites W2083222334 @default.
- W3012513984 cites W2083415705 @default.
- W3012513984 cites W2084252775 @default.
- W3012513984 cites W2084781518 @default.
- W3012513984 cites W2085376942 @default.
- W3012513984 cites W2087630594 @default.
- W3012513984 cites W2087698390 @default.
- W3012513984 cites W2092981979 @default.
- W3012513984 cites W2096462449 @default.
- W3012513984 cites W2104757784 @default.
- W3012513984 cites W2107730813 @default.
- W3012513984 cites W2108806320 @default.
- W3012513984 cites W2109200759 @default.
- W3012513984 cites W2109455667 @default.
- W3012513984 cites W2109885311 @default.
- W3012513984 cites W2110043143 @default.
- W3012513984 cites W2120145199 @default.
- W3012513984 cites W2122427541 @default.
- W3012513984 cites W2122946506 @default.
- W3012513984 cites W2127437840 @default.