Matches in SemOpenAlex for { <https://semopenalex.org/work/W3012532282> ?p ?o ?g. }
Showing items 1 to 86 of
86
with 100 items per page.
- W3012532282 abstract "In today’s digital age, detecting abnormal events in the traffic scene is a more significant problem in video surveillance. The proposed scheme is adopted for detecting abnormalities such as wrong side driving, people crossing the road illegally, vehicle moving in pedestrain pathway and which uses spatio-temporal attributes. Although numerous machine learning approaches are described in existing literature focusing on pixel-wise differnce with less performance in identifying the abnormalities in video traffic scenes. In this paper, a novel frame work for identifying abnormal detection using unsupervised deep learning algorithm. The scheme uses joint based methodology (ConvLSTM with kmeans) with a combination of reconstruction and clustering loss respectively. The convolutional neural network with LSTM is used to detect and recognize anomalies in traffic scenes with refernce of previous frame information. To identify the normal or abnormal events, the proposed work is composed of training and testing phase. The proposed model is implemented in real time and it is found that the accuracy rate for detecting abnormalities 93.02% abnormality than state-of-art technique." @default.
- W3012532282 created "2020-03-23" @default.
- W3012532282 creator A5051485406 @default.
- W3012532282 creator A5055640135 @default.
- W3012532282 creator A5064837501 @default.
- W3012532282 creator A5083686585 @default.
- W3012532282 date "2019-03-01" @default.
- W3012532282 modified "2023-10-17" @default.
- W3012532282 title "Detecting Abnormal Event in Traffic Scenes using Unsupervised Deep Learning Approach" @default.
- W3012532282 cites W1492261040 @default.
- W3012532282 cites W1522734439 @default.
- W3012532282 cites W1931450083 @default.
- W3012532282 cites W1983364832 @default.
- W3012532282 cites W2012931101 @default.
- W3012532282 cites W2016053056 @default.
- W3012532282 cites W2125105611 @default.
- W3012532282 cites W2163612318 @default.
- W3012532282 cites W2170932168 @default.
- W3012532282 cites W2173179171 @default.
- W3012532282 cites W2460849547 @default.
- W3012532282 cites W2548996605 @default.
- W3012532282 cites W2579718262 @default.
- W3012532282 cites W2603986758 @default.
- W3012532282 cites W2964118618 @default.
- W3012532282 doi "https://doi.org/10.1109/wispnet45539.2019.9032774" @default.
- W3012532282 hasPublicationYear "2019" @default.
- W3012532282 type Work @default.
- W3012532282 sameAs 3012532282 @default.
- W3012532282 citedByCount "1" @default.
- W3012532282 countsByYear W30125322822021 @default.
- W3012532282 crossrefType "proceedings-article" @default.
- W3012532282 hasAuthorship W3012532282A5051485406 @default.
- W3012532282 hasAuthorship W3012532282A5055640135 @default.
- W3012532282 hasAuthorship W3012532282A5064837501 @default.
- W3012532282 hasAuthorship W3012532282A5083686585 @default.
- W3012532282 hasConcept C108583219 @default.
- W3012532282 hasConcept C119857082 @default.
- W3012532282 hasConcept C121332964 @default.
- W3012532282 hasConcept C126042441 @default.
- W3012532282 hasConcept C153180895 @default.
- W3012532282 hasConcept C154945302 @default.
- W3012532282 hasConcept C15744967 @default.
- W3012532282 hasConcept C2779662365 @default.
- W3012532282 hasConcept C31972630 @default.
- W3012532282 hasConcept C41008148 @default.
- W3012532282 hasConcept C50965678 @default.
- W3012532282 hasConcept C62520636 @default.
- W3012532282 hasConcept C73555534 @default.
- W3012532282 hasConcept C76155785 @default.
- W3012532282 hasConcept C77805123 @default.
- W3012532282 hasConcept C8038995 @default.
- W3012532282 hasConcept C81363708 @default.
- W3012532282 hasConceptScore W3012532282C108583219 @default.
- W3012532282 hasConceptScore W3012532282C119857082 @default.
- W3012532282 hasConceptScore W3012532282C121332964 @default.
- W3012532282 hasConceptScore W3012532282C126042441 @default.
- W3012532282 hasConceptScore W3012532282C153180895 @default.
- W3012532282 hasConceptScore W3012532282C154945302 @default.
- W3012532282 hasConceptScore W3012532282C15744967 @default.
- W3012532282 hasConceptScore W3012532282C2779662365 @default.
- W3012532282 hasConceptScore W3012532282C31972630 @default.
- W3012532282 hasConceptScore W3012532282C41008148 @default.
- W3012532282 hasConceptScore W3012532282C50965678 @default.
- W3012532282 hasConceptScore W3012532282C62520636 @default.
- W3012532282 hasConceptScore W3012532282C73555534 @default.
- W3012532282 hasConceptScore W3012532282C76155785 @default.
- W3012532282 hasConceptScore W3012532282C77805123 @default.
- W3012532282 hasConceptScore W3012532282C8038995 @default.
- W3012532282 hasConceptScore W3012532282C81363708 @default.
- W3012532282 hasLocation W30125322821 @default.
- W3012532282 hasOpenAccess W3012532282 @default.
- W3012532282 hasPrimaryLocation W30125322821 @default.
- W3012532282 hasRelatedWork W1491343858 @default.
- W3012532282 hasRelatedWork W1505315132 @default.
- W3012532282 hasRelatedWork W2731899572 @default.
- W3012532282 hasRelatedWork W2773120646 @default.
- W3012532282 hasRelatedWork W2920938200 @default.
- W3012532282 hasRelatedWork W3121324630 @default.
- W3012532282 hasRelatedWork W3123344745 @default.
- W3012532282 hasRelatedWork W3159901390 @default.
- W3012532282 hasRelatedWork W3164822677 @default.
- W3012532282 hasRelatedWork W3215138031 @default.
- W3012532282 isParatext "false" @default.
- W3012532282 isRetracted "false" @default.
- W3012532282 magId "3012532282" @default.
- W3012532282 workType "article" @default.