Matches in SemOpenAlex for { <https://semopenalex.org/work/W3012535800> ?p ?o ?g. }
Showing items 1 to 65 of
65
with 100 items per page.
- W3012535800 endingPage "1410" @default.
- W3012535800 startingPage "1407" @default.
- W3012535800 abstract "Abstract Resource management is one of the most important and critical criteria for any engineering manufacturing facility to function as per the predefined schedule for fulfilling the customer demands. Considering this as a basic requirement, maintaining the good working condition of the identified resources such as machine tools becomes the most prioritized objective of the organization. In this context, an effort has been made to propose Artificial Intelligence (AI) based predictive model to predict the condition of the machine tool by considering the frictional force between the work piece and the cutting tool. Construction of the prediction model is a data driven process in which the relationship between input and output parameters has been established. In order to generate the data to develop such a prediction model for friction force, a turning operation was performed on ferrous and non-ferrous material with different combinations of process parameters, insert nose radius, tool height setting, wet and dry cutting conditions. Friction force between the cutting tool edge and the work piece was computed with the help of forces measured through the lathe tool dynamometer by applying the principle of Merchant’s circle diagram. The friction force computed for 648 experimental trials was used to develop an optimized Artificial Neural Network (ANN) architecture prediction model to predict the friction force for a given set of input parameters." @default.
- W3012535800 created "2020-03-23" @default.
- W3012535800 creator A5057676610 @default.
- W3012535800 creator A5061451010 @default.
- W3012535800 creator A5065967512 @default.
- W3012535800 date "2020-01-01" @default.
- W3012535800 modified "2023-09-25" @default.
- W3012535800 title "Friction force during machining process – Part 1: Development of optimized neural network architecture" @default.
- W3012535800 cites W1586335931 @default.
- W3012535800 cites W2142178378 @default.
- W3012535800 doi "https://doi.org/10.1016/j.matpr.2020.02.772" @default.
- W3012535800 hasPublicationYear "2020" @default.
- W3012535800 type Work @default.
- W3012535800 sameAs 3012535800 @default.
- W3012535800 citedByCount "2" @default.
- W3012535800 countsByYear W30125358002020 @default.
- W3012535800 countsByYear W30125358002023 @default.
- W3012535800 crossrefType "journal-article" @default.
- W3012535800 hasAuthorship W3012535800A5057676610 @default.
- W3012535800 hasAuthorship W3012535800A5061451010 @default.
- W3012535800 hasAuthorship W3012535800A5065967512 @default.
- W3012535800 hasConcept C111919701 @default.
- W3012535800 hasConcept C117671659 @default.
- W3012535800 hasConcept C123657996 @default.
- W3012535800 hasConcept C127413603 @default.
- W3012535800 hasConcept C154945302 @default.
- W3012535800 hasConcept C166957645 @default.
- W3012535800 hasConcept C41008148 @default.
- W3012535800 hasConcept C50644808 @default.
- W3012535800 hasConcept C523214423 @default.
- W3012535800 hasConcept C78519656 @default.
- W3012535800 hasConcept C95457728 @default.
- W3012535800 hasConcept C98045186 @default.
- W3012535800 hasConceptScore W3012535800C111919701 @default.
- W3012535800 hasConceptScore W3012535800C117671659 @default.
- W3012535800 hasConceptScore W3012535800C123657996 @default.
- W3012535800 hasConceptScore W3012535800C127413603 @default.
- W3012535800 hasConceptScore W3012535800C154945302 @default.
- W3012535800 hasConceptScore W3012535800C166957645 @default.
- W3012535800 hasConceptScore W3012535800C41008148 @default.
- W3012535800 hasConceptScore W3012535800C50644808 @default.
- W3012535800 hasConceptScore W3012535800C523214423 @default.
- W3012535800 hasConceptScore W3012535800C78519656 @default.
- W3012535800 hasConceptScore W3012535800C95457728 @default.
- W3012535800 hasConceptScore W3012535800C98045186 @default.
- W3012535800 hasLocation W30125358001 @default.
- W3012535800 hasOpenAccess W3012535800 @default.
- W3012535800 hasPrimaryLocation W30125358001 @default.
- W3012535800 hasRelatedWork W2349276566 @default.
- W3012535800 hasRelatedWork W2352949160 @default.
- W3012535800 hasRelatedWork W2356752010 @default.
- W3012535800 hasRelatedWork W2385168882 @default.
- W3012535800 hasRelatedWork W2388058536 @default.
- W3012535800 hasRelatedWork W2390431004 @default.
- W3012535800 hasRelatedWork W2394241553 @default.
- W3012535800 hasRelatedWork W2516925192 @default.
- W3012535800 hasRelatedWork W3123199902 @default.
- W3012535800 hasRelatedWork W2233824149 @default.
- W3012535800 hasVolume "27" @default.
- W3012535800 isParatext "false" @default.
- W3012535800 isRetracted "false" @default.
- W3012535800 magId "3012535800" @default.
- W3012535800 workType "article" @default.