Matches in SemOpenAlex for { <https://semopenalex.org/work/W3012548441> ?p ?o ?g. }
Showing items 1 to 92 of
92
with 100 items per page.
- W3012548441 endingPage "103899" @default.
- W3012548441 startingPage "103899" @default.
- W3012548441 abstract "Abstract This work introduces a high-efficiency approach for face recognition applications based on features using a recent algorithm called Floor of Log (FoL). The advantage of this method is the reduction of storage and energy, maintaining accuracy. K-Nearest Neighbors and Support Vector Machine algorithm was applied to learn the better parameter of the FoL algorithm using cross-validation. Accuracy and the size after the compression process were adopted to evaluate the proposed algorithm. The FoL was tested in CelebA, Extended YaleB, AR, and LFW face datasets obtaining the same or better results when compared with the approach using the same classifiers with uncompressed features, but with a reduction of 86 to 91% compared to the original data size. The proposed method of this work presents a robust and straightforward algorithm of compression of features for face recognition applications. The FoL is a new supervised compression algorithm that can be adapted to achieve great results and integrated with edge computing systems." @default.
- W3012548441 created "2020-03-23" @default.
- W3012548441 creator A5045093520 @default.
- W3012548441 creator A5045256412 @default.
- W3012548441 creator A5049651824 @default.
- W3012548441 creator A5070339108 @default.
- W3012548441 creator A5074875886 @default.
- W3012548441 creator A5089000017 @default.
- W3012548441 creator A5089339049 @default.
- W3012548441 creator A5090332114 @default.
- W3012548441 date "2020-04-01" @default.
- W3012548441 modified "2023-10-03" @default.
- W3012548441 title "A high-efficiency energy and storage approach for IoT applications of facial recognition" @default.
- W3012548441 cites W1967022116 @default.
- W3012548441 cites W2086944309 @default.
- W3012548441 cites W2123921160 @default.
- W3012548441 cites W2325939864 @default.
- W3012548441 cites W2529113503 @default.
- W3012548441 cites W2585658440 @default.
- W3012548441 cites W2617295893 @default.
- W3012548441 cites W2750692136 @default.
- W3012548441 cites W2761373266 @default.
- W3012548441 cites W2784792583 @default.
- W3012548441 cites W2889611405 @default.
- W3012548441 cites W2891126454 @default.
- W3012548441 cites W2891799356 @default.
- W3012548441 cites W2894474596 @default.
- W3012548441 cites W2898635601 @default.
- W3012548441 cites W2900471873 @default.
- W3012548441 cites W2909807406 @default.
- W3012548441 cites W2913263959 @default.
- W3012548441 cites W2913410421 @default.
- W3012548441 cites W2914440067 @default.
- W3012548441 cites W2920270483 @default.
- W3012548441 cites W2929385737 @default.
- W3012548441 cites W2940931619 @default.
- W3012548441 cites W2941635601 @default.
- W3012548441 cites W2947483594 @default.
- W3012548441 cites W2969985801 @default.
- W3012548441 cites W2970049315 @default.
- W3012548441 cites W2981408674 @default.
- W3012548441 cites W2986364197 @default.
- W3012548441 cites W3099206234 @default.
- W3012548441 cites W3101718302 @default.
- W3012548441 doi "https://doi.org/10.1016/j.imavis.2020.103899" @default.
- W3012548441 hasPublicationYear "2020" @default.
- W3012548441 type Work @default.
- W3012548441 sameAs 3012548441 @default.
- W3012548441 citedByCount "14" @default.
- W3012548441 countsByYear W30125484412020 @default.
- W3012548441 countsByYear W30125484412021 @default.
- W3012548441 countsByYear W30125484412022 @default.
- W3012548441 countsByYear W30125484412023 @default.
- W3012548441 crossrefType "journal-article" @default.
- W3012548441 hasAuthorship W3012548441A5045093520 @default.
- W3012548441 hasAuthorship W3012548441A5045256412 @default.
- W3012548441 hasAuthorship W3012548441A5049651824 @default.
- W3012548441 hasAuthorship W3012548441A5070339108 @default.
- W3012548441 hasAuthorship W3012548441A5074875886 @default.
- W3012548441 hasAuthorship W3012548441A5089000017 @default.
- W3012548441 hasAuthorship W3012548441A5089339049 @default.
- W3012548441 hasAuthorship W3012548441A5090332114 @default.
- W3012548441 hasConcept C153180895 @default.
- W3012548441 hasConcept C154945302 @default.
- W3012548441 hasConcept C31972630 @default.
- W3012548441 hasConcept C41008148 @default.
- W3012548441 hasConceptScore W3012548441C153180895 @default.
- W3012548441 hasConceptScore W3012548441C154945302 @default.
- W3012548441 hasConceptScore W3012548441C31972630 @default.
- W3012548441 hasConceptScore W3012548441C41008148 @default.
- W3012548441 hasFunder F4320321091 @default.
- W3012548441 hasFunder F4320322025 @default.
- W3012548441 hasLocation W30125484411 @default.
- W3012548441 hasOpenAccess W3012548441 @default.
- W3012548441 hasPrimaryLocation W30125484411 @default.
- W3012548441 hasRelatedWork W1891287906 @default.
- W3012548441 hasRelatedWork W1969923398 @default.
- W3012548441 hasRelatedWork W2036807459 @default.
- W3012548441 hasRelatedWork W2058170566 @default.
- W3012548441 hasRelatedWork W2170022336 @default.
- W3012548441 hasRelatedWork W2229312674 @default.
- W3012548441 hasRelatedWork W258625772 @default.
- W3012548441 hasRelatedWork W2755342338 @default.
- W3012548441 hasRelatedWork W2772917594 @default.
- W3012548441 hasRelatedWork W3116076068 @default.
- W3012548441 hasVolume "96" @default.
- W3012548441 isParatext "false" @default.
- W3012548441 isRetracted "false" @default.
- W3012548441 magId "3012548441" @default.
- W3012548441 workType "article" @default.