Matches in SemOpenAlex for { <https://semopenalex.org/work/W3012587841> ?p ?o ?g. }
- W3012587841 endingPage "1238" @default.
- W3012587841 startingPage "1229" @default.
- W3012587841 abstract "OBJECTIVE. The purposes of this study were to assess the performance of a 3D convolutional neural network (CNN) for automatic segmentation of prostates on MR images and to compare the volume estimates from the 3D CNN with those of the ellipsoid formula. MATERIALS AND METHODS. The study included 330 MR image sets that were divided into 260 training sets and 70 test sets for automated segmentation of the entire prostate. Among these, 162 training sets and 50 test sets were used for transition zone segmentation. Assisted by manual segmentation by two radiologists, the following values were obtained: estimates of ground-truth volume (VGT), software-derived volume (VSW), mean of VGT and VSW (VAV), and automatically generated volume from the 3D CNN (VNET). These values were compared with the volume calculated with the ellipsoid formula (VEL). RESULTS. The Dice similarity coefficient for the entire prostate was 87.12% and for the transition zone was 76.48%. There was no significant difference between VNET and VAV (p = 0.689) in the test sets of the entire prostate, whereas a significant difference was found between VEL and VAV (p < 0.001). No significant difference was found among the volume estimates in the test sets of the transition zone. Overall intraclass correlation coefficients between the volume estimates were excellent (0.887-0.995). In the test sets of entire prostate, the mean error between VGT and VNET (2.5) was smaller than that between VGT and VEL (3.3). CONCLUSION. The fully automated network studied provides reliable volume estimates of the entire prostate compared with those obtained with the ellipsoid formula. Fast and accurate volume measurement by use of the 3D CNN may help clinicians evaluate prostate disease." @default.
- W3012587841 created "2020-03-27" @default.
- W3012587841 creator A5036555804 @default.
- W3012587841 creator A5039863266 @default.
- W3012587841 creator A5063748248 @default.
- W3012587841 creator A5067944967 @default.
- W3012587841 creator A5068028516 @default.
- W3012587841 creator A5088540237 @default.
- W3012587841 creator A5091264821 @default.
- W3012587841 date "2020-06-01" @default.
- W3012587841 modified "2023-10-18" @default.
- W3012587841 title "Three-Dimensional Convolutional Neural Network for Prostate MRI Segmentation and Comparison of Prostate Volume Measurements by Use of Artificial Neural Network and Ellipsoid Formula" @default.
- W3012587841 cites W1976331652 @default.
- W3012587841 cites W1991909028 @default.
- W3012587841 cites W2003715616 @default.
- W3012587841 cites W2026838241 @default.
- W3012587841 cites W2030750348 @default.
- W3012587841 cites W2056926361 @default.
- W3012587841 cites W2059619755 @default.
- W3012587841 cites W2070958949 @default.
- W3012587841 cites W2087437159 @default.
- W3012587841 cites W2101316382 @default.
- W3012587841 cites W2106033751 @default.
- W3012587841 cites W2111648085 @default.
- W3012587841 cites W2142710426 @default.
- W3012587841 cites W2160179578 @default.
- W3012587841 cites W2168637891 @default.
- W3012587841 cites W2168987885 @default.
- W3012587841 cites W2323200062 @default.
- W3012587841 cites W2512180612 @default.
- W3012587841 cites W2755827143 @default.
- W3012587841 cites W2794474997 @default.
- W3012587841 cites W2887533690 @default.
- W3012587841 cites W2907769417 @default.
- W3012587841 cites W2964868046 @default.
- W3012587841 cites W2969238009 @default.
- W3012587841 doi "https://doi.org/10.2214/ajr.19.22254" @default.
- W3012587841 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32208009" @default.
- W3012587841 hasPublicationYear "2020" @default.
- W3012587841 type Work @default.
- W3012587841 sameAs 3012587841 @default.
- W3012587841 citedByCount "18" @default.
- W3012587841 countsByYear W30125878412020 @default.
- W3012587841 countsByYear W30125878412021 @default.
- W3012587841 countsByYear W30125878412022 @default.
- W3012587841 countsByYear W30125878412023 @default.
- W3012587841 crossrefType "journal-article" @default.
- W3012587841 hasAuthorship W3012587841A5036555804 @default.
- W3012587841 hasAuthorship W3012587841A5039863266 @default.
- W3012587841 hasAuthorship W3012587841A5063748248 @default.
- W3012587841 hasAuthorship W3012587841A5067944967 @default.
- W3012587841 hasAuthorship W3012587841A5068028516 @default.
- W3012587841 hasAuthorship W3012587841A5088540237 @default.
- W3012587841 hasAuthorship W3012587841A5091264821 @default.
- W3012587841 hasConcept C104709138 @default.
- W3012587841 hasConcept C105795698 @default.
- W3012587841 hasConcept C121332964 @default.
- W3012587841 hasConcept C121608353 @default.
- W3012587841 hasConcept C124504099 @default.
- W3012587841 hasConcept C126322002 @default.
- W3012587841 hasConcept C127313418 @default.
- W3012587841 hasConcept C13280743 @default.
- W3012587841 hasConcept C146849305 @default.
- W3012587841 hasConcept C153180895 @default.
- W3012587841 hasConcept C154945302 @default.
- W3012587841 hasConcept C163892561 @default.
- W3012587841 hasConcept C20556612 @default.
- W3012587841 hasConcept C2776235491 @default.
- W3012587841 hasConcept C2989005 @default.
- W3012587841 hasConcept C33923547 @default.
- W3012587841 hasConcept C41008148 @default.
- W3012587841 hasConcept C50644808 @default.
- W3012587841 hasConcept C57489055 @default.
- W3012587841 hasConcept C62520636 @default.
- W3012587841 hasConcept C71924100 @default.
- W3012587841 hasConcept C81363708 @default.
- W3012587841 hasConcept C89600930 @default.
- W3012587841 hasConcept C9893847 @default.
- W3012587841 hasConceptScore W3012587841C104709138 @default.
- W3012587841 hasConceptScore W3012587841C105795698 @default.
- W3012587841 hasConceptScore W3012587841C121332964 @default.
- W3012587841 hasConceptScore W3012587841C121608353 @default.
- W3012587841 hasConceptScore W3012587841C124504099 @default.
- W3012587841 hasConceptScore W3012587841C126322002 @default.
- W3012587841 hasConceptScore W3012587841C127313418 @default.
- W3012587841 hasConceptScore W3012587841C13280743 @default.
- W3012587841 hasConceptScore W3012587841C146849305 @default.
- W3012587841 hasConceptScore W3012587841C153180895 @default.
- W3012587841 hasConceptScore W3012587841C154945302 @default.
- W3012587841 hasConceptScore W3012587841C163892561 @default.
- W3012587841 hasConceptScore W3012587841C20556612 @default.
- W3012587841 hasConceptScore W3012587841C2776235491 @default.
- W3012587841 hasConceptScore W3012587841C2989005 @default.
- W3012587841 hasConceptScore W3012587841C33923547 @default.
- W3012587841 hasConceptScore W3012587841C41008148 @default.
- W3012587841 hasConceptScore W3012587841C50644808 @default.
- W3012587841 hasConceptScore W3012587841C57489055 @default.
- W3012587841 hasConceptScore W3012587841C62520636 @default.