Matches in SemOpenAlex for { <https://semopenalex.org/work/W3012651208> ?p ?o ?g. }
- W3012651208 endingPage "1781" @default.
- W3012651208 startingPage "1781" @default.
- W3012651208 abstract "The smooth variable structure filter (SVSF) is a new-type filter based on the sliding-mode concepts and has good stability and robustness in overcoming the modeling uncertainties and errors. However, SVSF is insufficient to suppress Gaussian noise. A novel smooth variable structure smoother (SVSS) based on SVSF is presented here, which mainly focuses on this drawback and improves the SVSF estimation accuracy of the system. The estimation of the linear Gaussian system state based on SVSS is divided into two steps: Firstly, the SVSF state estimate and covariance are computed during the forward pass in time. Then, the smoothed state estimate is computed during the backward pass by using the innovation of the measured values and covariance estimate matrix. According to the simulation results with respect to the maneuvering target tracking, SVSS has a better performance compared with another smoother based on SVSF and the Kalman smoother in different tracking scenarios. Therefore, the SVSS proposed in this paper could be widely applied in the field of state estimation in dynamic system." @default.
- W3012651208 created "2020-03-27" @default.
- W3012651208 creator A5006908933 @default.
- W3012651208 creator A5009590736 @default.
- W3012651208 creator A5010880229 @default.
- W3012651208 creator A5048787386 @default.
- W3012651208 date "2020-03-23" @default.
- W3012651208 modified "2023-09-25" @default.
- W3012651208 title "A Novel Smooth Variable Structure Smoother for Robust Estimation" @default.
- W3012651208 cites W1979659209 @default.
- W3012651208 cites W1994597642 @default.
- W3012651208 cites W1994700156 @default.
- W3012651208 cites W2002910452 @default.
- W3012651208 cites W2013891788 @default.
- W3012651208 cites W2021894918 @default.
- W3012651208 cites W2049134384 @default.
- W3012651208 cites W2054091988 @default.
- W3012651208 cites W2058072983 @default.
- W3012651208 cites W2063695849 @default.
- W3012651208 cites W2088634472 @default.
- W3012651208 cites W2092200183 @default.
- W3012651208 cites W2092520467 @default.
- W3012651208 cites W2095515828 @default.
- W3012651208 cites W2097009900 @default.
- W3012651208 cites W2103632679 @default.
- W3012651208 cites W2105934661 @default.
- W3012651208 cites W2120268956 @default.
- W3012651208 cites W2159065647 @default.
- W3012651208 cites W2572262903 @default.
- W3012651208 cites W2575097171 @default.
- W3012651208 cites W2593052211 @default.
- W3012651208 cites W2737188128 @default.
- W3012651208 cites W2749496335 @default.
- W3012651208 cites W2759183072 @default.
- W3012651208 cites W2775403132 @default.
- W3012651208 cites W2800161312 @default.
- W3012651208 cites W2805380957 @default.
- W3012651208 cites W2810968776 @default.
- W3012651208 cites W2893910241 @default.
- W3012651208 cites W2893986908 @default.
- W3012651208 cites W2894582337 @default.
- W3012651208 cites W2896923686 @default.
- W3012651208 cites W2916372995 @default.
- W3012651208 cites W2922922453 @default.
- W3012651208 cites W2943989682 @default.
- W3012651208 cites W2944846513 @default.
- W3012651208 cites W2950682674 @default.
- W3012651208 cites W2955669769 @default.
- W3012651208 cites W2972222132 @default.
- W3012651208 cites W2972491066 @default.
- W3012651208 cites W2972813303 @default.
- W3012651208 cites W2975751843 @default.
- W3012651208 cites W2985537704 @default.
- W3012651208 cites W3003844546 @default.
- W3012651208 cites W2908791240 @default.
- W3012651208 cites W2932099065 @default.
- W3012651208 doi "https://doi.org/10.3390/s20061781" @default.
- W3012651208 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7146148" @default.
- W3012651208 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32210204" @default.
- W3012651208 hasPublicationYear "2020" @default.
- W3012651208 type Work @default.
- W3012651208 sameAs 3012651208 @default.
- W3012651208 citedByCount "6" @default.
- W3012651208 countsByYear W30126512082021 @default.
- W3012651208 countsByYear W30126512082022 @default.
- W3012651208 crossrefType "journal-article" @default.
- W3012651208 hasAuthorship W3012651208A5006908933 @default.
- W3012651208 hasAuthorship W3012651208A5009590736 @default.
- W3012651208 hasAuthorship W3012651208A5010880229 @default.
- W3012651208 hasAuthorship W3012651208A5048787386 @default.
- W3012651208 hasBestOaLocation W30126512081 @default.
- W3012651208 hasConcept C104317684 @default.
- W3012651208 hasConcept C105795698 @default.
- W3012651208 hasConcept C11413529 @default.
- W3012651208 hasConcept C115961682 @default.
- W3012651208 hasConcept C121332964 @default.
- W3012651208 hasConcept C129537906 @default.
- W3012651208 hasConcept C134306372 @default.
- W3012651208 hasConcept C154945302 @default.
- W3012651208 hasConcept C157286648 @default.
- W3012651208 hasConcept C163716315 @default.
- W3012651208 hasConcept C178650346 @default.
- W3012651208 hasConcept C182365436 @default.
- W3012651208 hasConcept C185142706 @default.
- W3012651208 hasConcept C185592680 @default.
- W3012651208 hasConcept C2775924081 @default.
- W3012651208 hasConcept C33923547 @default.
- W3012651208 hasConcept C41008148 @default.
- W3012651208 hasConcept C47446073 @default.
- W3012651208 hasConcept C55493867 @default.
- W3012651208 hasConcept C62520636 @default.
- W3012651208 hasConcept C63479239 @default.
- W3012651208 hasConcept C97355855 @default.
- W3012651208 hasConcept C99498987 @default.
- W3012651208 hasConceptScore W3012651208C104317684 @default.
- W3012651208 hasConceptScore W3012651208C105795698 @default.
- W3012651208 hasConceptScore W3012651208C11413529 @default.
- W3012651208 hasConceptScore W3012651208C115961682 @default.