Matches in SemOpenAlex for { <https://semopenalex.org/work/W3012665130> ?p ?o ?g. }
- W3012665130 endingPage "452" @default.
- W3012665130 startingPage "441" @default.
- W3012665130 abstract "Compression index C c is an essential parameter in geotechnical design for which the effectiveness of correlation is still a challenge. This paper suggests a novel modelling approach using machine learning (ML) technique. The performance of five commonly used machine learning (ML) algorithms, i.e. back-propagation neural network (BPNN), extreme learning machine (ELM), support vector machine (SVM), random forest (RF) and evolutionary polynomial regression (EPR) in predicting C c is comprehensively investigated. A database with a total number of 311 datasets including three input variables, i.e. initial void ratio e 0 , liquid limit water content w L , plasticity index I p , and one output variable C c is first established. Genetic algorithm (GA) is used to optimize the hyper-parameters in five ML algorithms, and the average prediction error for the 10-fold cross-validation (CV) sets is set as the fitness function in the GA for enhancing the robustness of ML models. The results indicate that ML models outperform empirical prediction formulations with lower prediction error. RF yields the lowest error followed by BPNN, ELM, EPR and SVM. If the ranges of input variables in the database are large enough, BPNN and RF models are recommended to predict C c . Furthermore, if the distribution of input variables is continuous, RF model is the best one. Otherwise, EPR model is recommended if the ranges of input variables are small. The predicted correlations between input and output variables using five ML models show great agreement with the physical explanation. This paper suggests a novel modelling approach using machine learning (ML) technique. The performance of five commonly used machine learning (ML) algorithms, i.e. back-propagation neural network (BPNN), extreme learning machine (ELM), support vector machine (SVM), random forest (RF) and evolutionary polynomial regression (EPR) in predicting Cc is comprehensively investigated. The results indicate that ML models outperform empirical prediction formulations with lower prediction error. RF yields the lowest error followed by BPNN, ELM, EPR and SVM. If the ranges of input variables in the database are large enough, BPNN and RF models are recommended to predict Cc. Furthermore, if the distribution of input variables is continuous, RF model is the best one. • Novel machine learning based models are proposed for predicting compression index of clays. • The performance of five commonly used machine learning algorithms in predicting Cc is comprehensively investigated. • BPNN and RF models are recommended to predict the compression index of clays." @default.
- W3012665130 created "2020-03-27" @default.
- W3012665130 creator A5000114006 @default.
- W3012665130 creator A5024893578 @default.
- W3012665130 creator A5026137704 @default.
- W3012665130 creator A5049824503 @default.
- W3012665130 creator A5084798688 @default.
- W3012665130 date "2021-01-01" @default.
- W3012665130 modified "2023-10-08" @default.
- W3012665130 title "Intelligent modelling of clay compressibility using hybrid meta-heuristic and machine learning algorithms" @default.
- W3012665130 cites W1498436455 @default.
- W3012665130 cites W1964306993 @default.
- W3012665130 cites W1968576340 @default.
- W3012665130 cites W1970620492 @default.
- W3012665130 cites W1976213807 @default.
- W3012665130 cites W1979179853 @default.
- W3012665130 cites W1992616260 @default.
- W3012665130 cites W1993976073 @default.
- W3012665130 cites W1995699384 @default.
- W3012665130 cites W1999405686 @default.
- W3012665130 cites W2002739427 @default.
- W3012665130 cites W2004941813 @default.
- W3012665130 cites W2006037565 @default.
- W3012665130 cites W2014891611 @default.
- W3012665130 cites W2020390281 @default.
- W3012665130 cites W2029803196 @default.
- W3012665130 cites W2030178855 @default.
- W3012665130 cites W2033904036 @default.
- W3012665130 cites W2047898003 @default.
- W3012665130 cites W2053780480 @default.
- W3012665130 cites W2079694385 @default.
- W3012665130 cites W2088765131 @default.
- W3012665130 cites W2093843688 @default.
- W3012665130 cites W2111072639 @default.
- W3012665130 cites W2113242816 @default.
- W3012665130 cites W2114773834 @default.
- W3012665130 cites W2124037584 @default.
- W3012665130 cites W2129537185 @default.
- W3012665130 cites W2136010074 @default.
- W3012665130 cites W2139363524 @default.
- W3012665130 cites W2140504592 @default.
- W3012665130 cites W2198168719 @default.
- W3012665130 cites W2217794782 @default.
- W3012665130 cites W2299068460 @default.
- W3012665130 cites W2437478246 @default.
- W3012665130 cites W2460852853 @default.
- W3012665130 cites W2497637774 @default.
- W3012665130 cites W2509904226 @default.
- W3012665130 cites W2515072169 @default.
- W3012665130 cites W2609656887 @default.
- W3012665130 cites W2728391789 @default.
- W3012665130 cites W2745266560 @default.
- W3012665130 cites W2761380721 @default.
- W3012665130 cites W2773490536 @default.
- W3012665130 cites W2790703507 @default.
- W3012665130 cites W2792369524 @default.
- W3012665130 cites W2792935626 @default.
- W3012665130 cites W2794355537 @default.
- W3012665130 cites W2797086020 @default.
- W3012665130 cites W2800643694 @default.
- W3012665130 cites W2884013937 @default.
- W3012665130 cites W2899011446 @default.
- W3012665130 cites W2900306457 @default.
- W3012665130 cites W2900874636 @default.
- W3012665130 cites W2902532632 @default.
- W3012665130 cites W2902947938 @default.
- W3012665130 cites W2904159559 @default.
- W3012665130 cites W2912902753 @default.
- W3012665130 cites W2922451116 @default.
- W3012665130 cites W2952634700 @default.
- W3012665130 cites W2953961444 @default.
- W3012665130 cites W2972115999 @default.
- W3012665130 cites W2980334539 @default.
- W3012665130 cites W2981674946 @default.
- W3012665130 cites W2995771889 @default.
- W3012665130 cites W3009725319 @default.
- W3012665130 cites W3022283783 @default.
- W3012665130 cites W4212883601 @default.
- W3012665130 cites W4239510810 @default.
- W3012665130 cites W4243417134 @default.
- W3012665130 doi "https://doi.org/10.1016/j.gsf.2020.02.014" @default.
- W3012665130 hasPublicationYear "2021" @default.
- W3012665130 type Work @default.
- W3012665130 sameAs 3012665130 @default.
- W3012665130 citedByCount "63" @default.
- W3012665130 countsByYear W30126651302020 @default.
- W3012665130 countsByYear W30126651302021 @default.
- W3012665130 countsByYear W30126651302022 @default.
- W3012665130 countsByYear W30126651302023 @default.
- W3012665130 crossrefType "journal-article" @default.
- W3012665130 hasAuthorship W3012665130A5000114006 @default.
- W3012665130 hasAuthorship W3012665130A5024893578 @default.
- W3012665130 hasAuthorship W3012665130A5026137704 @default.
- W3012665130 hasAuthorship W3012665130A5049824503 @default.
- W3012665130 hasAuthorship W3012665130A5084798688 @default.
- W3012665130 hasBestOaLocation W30126651301 @default.
- W3012665130 hasConcept C104317684 @default.
- W3012665130 hasConcept C11413529 @default.