Matches in SemOpenAlex for { <https://semopenalex.org/work/W3012667734> ?p ?o ?g. }
- W3012667734 endingPage "530" @default.
- W3012667734 startingPage "530" @default.
- W3012667734 abstract "The significant increase of the Internet of Things (IoT) devices in smart homes and other smart infrastructure, and the recent attacks on these IoT devices, are motivating factors to secure and protect IoT networks. The primary security challenge to develop a methodology to identify a malicious activity correctly and mitigate the impact of such activity promptly. In this paper, we propose a two-level anomalous activity detection model for intrusion detection system in IoT networks. The level-1 model categorizes the network flow as normal flow or abnormal flow, while the level-2 model classifies the category or subcategory of detected malicious activity. When the network flow classified as an anomaly by the level-1 model, then the level-1 model forwards the stream to the level-2 model for further investigation to find the category or subcategory of the detected anomaly. Our proposed model constructed on flow-based features of the IoT network. Flow-based detection methodologies only inspect packet headers to classify the network traffic. Flow-based features extracted from the IoT Botnet dataset and various machine learning algorithms were investigated and tested via different cross-fold validation tests to select the best algorithm. The decision tree classifier yielded the highest predictive results for level-1, and the random forest classifier produced the highest predictive results for level-2. Our proposed model Accuracy, Precision, Recall, and F score for level-1 were measured as 99.99% and 99.90% for level-2. A two-level anomalous activity detection system for IoT networks we proposed will provide a robust framework for the development of malicious activity detection system for IoT networks. It would be of interest to researchers in academia and industry." @default.
- W3012667734 created "2020-03-27" @default.
- W3012667734 creator A5011840659 @default.
- W3012667734 creator A5091751624 @default.
- W3012667734 date "2020-03-23" @default.
- W3012667734 modified "2023-10-16" @default.
- W3012667734 title "A Two-Level Flow-Based Anomalous Activity Detection System for IoT Networks" @default.
- W3012667734 cites W1489146973 @default.
- W3012667734 cites W1544932070 @default.
- W3012667734 cites W1569819710 @default.
- W3012667734 cites W1975415766 @default.
- W3012667734 cites W1994864447 @default.
- W3012667734 cites W1996639403 @default.
- W3012667734 cites W1996799478 @default.
- W3012667734 cites W2000618265 @default.
- W3012667734 cites W2014563571 @default.
- W3012667734 cites W2014799576 @default.
- W3012667734 cites W2020743799 @default.
- W3012667734 cites W2025743285 @default.
- W3012667734 cites W2026609766 @default.
- W3012667734 cites W2031163547 @default.
- W3012667734 cites W2039207705 @default.
- W3012667734 cites W2043314203 @default.
- W3012667734 cites W2049421380 @default.
- W3012667734 cites W2054814904 @default.
- W3012667734 cites W2077373361 @default.
- W3012667734 cites W2085305295 @default.
- W3012667734 cites W2099940443 @default.
- W3012667734 cites W2104855677 @default.
- W3012667734 cites W2153363952 @default.
- W3012667734 cites W2156204309 @default.
- W3012667734 cites W2208028087 @default.
- W3012667734 cites W2219500813 @default.
- W3012667734 cites W2296509296 @default.
- W3012667734 cites W2331106415 @default.
- W3012667734 cites W2507636931 @default.
- W3012667734 cites W2512266566 @default.
- W3012667734 cites W2520311392 @default.
- W3012667734 cites W2534270843 @default.
- W3012667734 cites W2542991588 @default.
- W3012667734 cites W2591712613 @default.
- W3012667734 cites W2613189100 @default.
- W3012667734 cites W2620580412 @default.
- W3012667734 cites W2649060971 @default.
- W3012667734 cites W2783357966 @default.
- W3012667734 cites W2783810000 @default.
- W3012667734 cites W2786490145 @default.
- W3012667734 cites W2787701431 @default.
- W3012667734 cites W2789828921 @default.
- W3012667734 cites W2806370396 @default.
- W3012667734 cites W2918696265 @default.
- W3012667734 cites W2941288225 @default.
- W3012667734 cites W2945594226 @default.
- W3012667734 cites W2955014922 @default.
- W3012667734 cites W2963748489 @default.
- W3012667734 cites W2980801064 @default.
- W3012667734 cites W2982514609 @default.
- W3012667734 cites W2982853004 @default.
- W3012667734 cites W2990004253 @default.
- W3012667734 cites W2998722477 @default.
- W3012667734 cites W3006115916 @default.
- W3012667734 cites W3007760086 @default.
- W3012667734 cites W3011206963 @default.
- W3012667734 cites W3011446929 @default.
- W3012667734 cites W3122864121 @default.
- W3012667734 cites W3160415419 @default.
- W3012667734 cites W80736906 @default.
- W3012667734 doi "https://doi.org/10.3390/electronics9030530" @default.
- W3012667734 hasPublicationYear "2020" @default.
- W3012667734 type Work @default.
- W3012667734 sameAs 3012667734 @default.
- W3012667734 citedByCount "53" @default.
- W3012667734 countsByYear W30126677342020 @default.
- W3012667734 countsByYear W30126677342021 @default.
- W3012667734 countsByYear W30126677342022 @default.
- W3012667734 countsByYear W30126677342023 @default.
- W3012667734 crossrefType "journal-article" @default.
- W3012667734 hasAuthorship W3012667734A5011840659 @default.
- W3012667734 hasAuthorship W3012667734A5091751624 @default.
- W3012667734 hasBestOaLocation W30126677341 @default.
- W3012667734 hasConcept C110875604 @default.
- W3012667734 hasConcept C114809511 @default.
- W3012667734 hasConcept C119857082 @default.
- W3012667734 hasConcept C124101348 @default.
- W3012667734 hasConcept C126255220 @default.
- W3012667734 hasConcept C136764020 @default.
- W3012667734 hasConcept C149635348 @default.
- W3012667734 hasConcept C154945302 @default.
- W3012667734 hasConcept C158379750 @default.
- W3012667734 hasConcept C169258074 @default.
- W3012667734 hasConcept C202444582 @default.
- W3012667734 hasConcept C22735295 @default.
- W3012667734 hasConcept C2780617661 @default.
- W3012667734 hasConcept C31258907 @default.
- W3012667734 hasConcept C33923547 @default.
- W3012667734 hasConcept C35525427 @default.
- W3012667734 hasConcept C41008148 @default.
- W3012667734 hasConcept C739882 @default.