Matches in SemOpenAlex for { <https://semopenalex.org/work/W3012853988> ?p ?o ?g. }
- W3012853988 abstract "Abstract Background The detection of Alzheimer’s Disease (AD) in its formative stages, especially in Mild Cognitive Impairments (MCI), has the potential of helping the clinicians in understanding the condition. The literature review shows that the classification of MCI-converts and MCI-non-converts has not been explored profusely and the maximum classification accuracy reported is rather low. Thus, this paper proposes a Machine Learning approach for classifying patients of MCI into two groups one who converted to AD and the others who are not diagnosed with any signs of AD. The proposed algorithm is also used to distinguish MCI patients from controls (CN). This work uses the Structural Magnetic Resonance Imaging data. Methods This work proposes a 3-D variant of Local Binary Pattern (LBP), called LBP-20 for extracting features. The method has been compared with 3D-Discrete Wavelet Transform (3D-DWT). Subsequently, a combination of 3D-DWT and LBP-20 has been used for extracting features. The relevant features are selected using the Fisher Discriminant Ratio (FDR) and finally the classification has been carried out using the Support Vector Machine. Results The combination of 3D-DWT with LBP-20 results in a maximum accuracy of 88.77. Similarly, the proposed combination of methods is also applied to distinguish MCI from CN. The proposed method results in the classification accuracy of 90.31 in this data. Conclusion The proposed combination is able to extract relevant distribution of microstructures from each component, obtained with the use of DWT and thereby improving the classification accuracy. Moreover, the number of features used for classification is significantly less as compared to those obtained by 3D-DWT. The performance of the proposed method is measured in terms of accuracy, specificity and sensitivity and is found superior in comparison to the existing methods. Thus, the proposed method may contribute to effective diagnosis of MCI and may prove advantageous in clinical settings." @default.
- W3012853988 created "2020-03-27" @default.
- W3012853988 creator A5060995785 @default.
- W3012853988 creator A5079321533 @default.
- W3012853988 date "2020-02-21" @default.
- W3012853988 modified "2023-10-16" @default.
- W3012853988 title "A combination of 3-D discrete wavelet transform and 3-D local binary pattern for classification of mild cognitive impairment" @default.
- W3012853988 cites W1510314685 @default.
- W3012853988 cites W1827530491 @default.
- W3012853988 cites W1872034074 @default.
- W3012853988 cites W1901624583 @default.
- W3012853988 cites W1948745668 @default.
- W3012853988 cites W1966362214 @default.
- W3012853988 cites W1968576595 @default.
- W3012853988 cites W1992117549 @default.
- W3012853988 cites W2002774040 @default.
- W3012853988 cites W2009463478 @default.
- W3012853988 cites W2009849234 @default.
- W3012853988 cites W2010643121 @default.
- W3012853988 cites W2019583087 @default.
- W3012853988 cites W2021720039 @default.
- W3012853988 cites W2039051707 @default.
- W3012853988 cites W2090220821 @default.
- W3012853988 cites W2097440479 @default.
- W3012853988 cites W2098017711 @default.
- W3012853988 cites W2104048700 @default.
- W3012853988 cites W2111913931 @default.
- W3012853988 cites W2116649573 @default.
- W3012853988 cites W2119848633 @default.
- W3012853988 cites W2126598020 @default.
- W3012853988 cites W2126838454 @default.
- W3012853988 cites W2132984323 @default.
- W3012853988 cites W2136288391 @default.
- W3012853988 cites W2143826137 @default.
- W3012853988 cites W2162333503 @default.
- W3012853988 cites W2163352848 @default.
- W3012853988 cites W2171225117 @default.
- W3012853988 cites W2171723438 @default.
- W3012853988 cites W2333625584 @default.
- W3012853988 cites W2558927549 @default.
- W3012853988 cites W2583500168 @default.
- W3012853988 cites W2770301434 @default.
- W3012853988 cites W3021986761 @default.
- W3012853988 doi "https://doi.org/10.1186/s12911-020-1055-x" @default.
- W3012853988 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7035729" @default.
- W3012853988 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32085774" @default.
- W3012853988 hasPublicationYear "2020" @default.
- W3012853988 type Work @default.
- W3012853988 sameAs 3012853988 @default.
- W3012853988 citedByCount "10" @default.
- W3012853988 countsByYear W30128539882021 @default.
- W3012853988 countsByYear W30128539882022 @default.
- W3012853988 countsByYear W30128539882023 @default.
- W3012853988 crossrefType "journal-article" @default.
- W3012853988 hasAuthorship W3012853988A5060995785 @default.
- W3012853988 hasAuthorship W3012853988A5079321533 @default.
- W3012853988 hasBestOaLocation W30128539881 @default.
- W3012853988 hasConcept C115961682 @default.
- W3012853988 hasConcept C118552586 @default.
- W3012853988 hasConcept C12267149 @default.
- W3012853988 hasConcept C153180895 @default.
- W3012853988 hasConcept C154945302 @default.
- W3012853988 hasConcept C169900460 @default.
- W3012853988 hasConcept C196216189 @default.
- W3012853988 hasConcept C2984915365 @default.
- W3012853988 hasConcept C33923547 @default.
- W3012853988 hasConcept C41008148 @default.
- W3012853988 hasConcept C46286280 @default.
- W3012853988 hasConcept C47432892 @default.
- W3012853988 hasConcept C48372109 @default.
- W3012853988 hasConcept C53533937 @default.
- W3012853988 hasConcept C66905080 @default.
- W3012853988 hasConcept C69738355 @default.
- W3012853988 hasConcept C71924100 @default.
- W3012853988 hasConcept C87335442 @default.
- W3012853988 hasConcept C94375191 @default.
- W3012853988 hasConceptScore W3012853988C115961682 @default.
- W3012853988 hasConceptScore W3012853988C118552586 @default.
- W3012853988 hasConceptScore W3012853988C12267149 @default.
- W3012853988 hasConceptScore W3012853988C153180895 @default.
- W3012853988 hasConceptScore W3012853988C154945302 @default.
- W3012853988 hasConceptScore W3012853988C169900460 @default.
- W3012853988 hasConceptScore W3012853988C196216189 @default.
- W3012853988 hasConceptScore W3012853988C2984915365 @default.
- W3012853988 hasConceptScore W3012853988C33923547 @default.
- W3012853988 hasConceptScore W3012853988C41008148 @default.
- W3012853988 hasConceptScore W3012853988C46286280 @default.
- W3012853988 hasConceptScore W3012853988C47432892 @default.
- W3012853988 hasConceptScore W3012853988C48372109 @default.
- W3012853988 hasConceptScore W3012853988C53533937 @default.
- W3012853988 hasConceptScore W3012853988C66905080 @default.
- W3012853988 hasConceptScore W3012853988C69738355 @default.
- W3012853988 hasConceptScore W3012853988C71924100 @default.
- W3012853988 hasConceptScore W3012853988C87335442 @default.
- W3012853988 hasConceptScore W3012853988C94375191 @default.
- W3012853988 hasIssue "1" @default.
- W3012853988 hasLocation W30128539881 @default.
- W3012853988 hasLocation W30128539882 @default.
- W3012853988 hasLocation W30128539883 @default.
- W3012853988 hasLocation W30128539884 @default.