Matches in SemOpenAlex for { <https://semopenalex.org/work/W3012873558> ?p ?o ?g. }
- W3012873558 endingPage "440" @default.
- W3012873558 startingPage "425" @default.
- W3012873558 abstract "Advanced machine learning methods could be useful to obtain novel insights into some challenging nanomechanical problems. In this work, we employed artificial neural networks to predict the fracture stress of defective graphene samples. First, shallow neural networks were used to predict the fracture stress, which depends on the temperature, vacancy concentration, strain rate, and loading direction. A part of the data required to model the shallow networks was obtained by developing an analytical solution based on the Bailey durability criterion and the Arrhenius equation. Molecular dynamics (MD) simulations were also used to obtain some data. Sensitivity analysis was performed to explore the features learnt by the neural network, and their behaviour under extrapolation was also investigated. Subsequently, deep convolutional neural networks (CNNs) were developed to predict the fracture stress of graphene samples containing random distributions of vacancy defects. Data required to model CNNs was obtained from MD simulations. Our results reveal that the neural networks have a strong ability to predict the fracture stress of defective graphene under various processing conditions. In addition, this work highlights some advantages as well as limitations and challenges in using neural networks to solve complex problems in the domain of computational materials design." @default.
- W3012873558 created "2020-03-27" @default.
- W3012873558 creator A5000118406 @default.
- W3012873558 creator A5039747194 @default.
- W3012873558 creator A5082719155 @default.
- W3012873558 date "2020-08-01" @default.
- W3012873558 modified "2023-10-07" @default.
- W3012873558 title "Characterizing fracture stress of defective graphene samples using shallow and deep artificial neural networks" @default.
- W3012873558 cites W1498436455 @default.
- W3012873558 cites W1634945771 @default.
- W3012873558 cites W1970486977 @default.
- W3012873558 cites W1971735090 @default.
- W3012873558 cites W1977078434 @default.
- W3012873558 cites W1983692735 @default.
- W3012873558 cites W1988497036 @default.
- W3012873558 cites W1999820475 @default.
- W3012873558 cites W2010971702 @default.
- W3012873558 cites W2019465613 @default.
- W3012873558 cites W2026958440 @default.
- W3012873558 cites W2039288515 @default.
- W3012873558 cites W2056826174 @default.
- W3012873558 cites W2080749889 @default.
- W3012873558 cites W2087810538 @default.
- W3012873558 cites W2112796928 @default.
- W3012873558 cites W2137983211 @default.
- W3012873558 cites W2138159532 @default.
- W3012873558 cites W2148619262 @default.
- W3012873558 cites W2155482699 @default.
- W3012873558 cites W2163980958 @default.
- W3012873558 cites W2200589053 @default.
- W3012873558 cites W2261676784 @default.
- W3012873558 cites W2395579298 @default.
- W3012873558 cites W2615447206 @default.
- W3012873558 cites W2624989300 @default.
- W3012873558 cites W2748421465 @default.
- W3012873558 cites W2753246113 @default.
- W3012873558 cites W2756054052 @default.
- W3012873558 cites W2757866482 @default.
- W3012873558 cites W2760710953 @default.
- W3012873558 cites W2777417212 @default.
- W3012873558 cites W2793169732 @default.
- W3012873558 cites W2795371074 @default.
- W3012873558 cites W2803170602 @default.
- W3012873558 cites W2887006546 @default.
- W3012873558 cites W2890131401 @default.
- W3012873558 cites W2895166263 @default.
- W3012873558 cites W2899683969 @default.
- W3012873558 cites W2919115771 @default.
- W3012873558 cites W2922801365 @default.
- W3012873558 cites W2940163937 @default.
- W3012873558 cites W2952832141 @default.
- W3012873558 cites W2954088480 @default.
- W3012873558 cites W2962940229 @default.
- W3012873558 cites W2963545397 @default.
- W3012873558 cites W2965961226 @default.
- W3012873558 cites W3099423575 @default.
- W3012873558 cites W3101643101 @default.
- W3012873558 cites W604021605 @default.
- W3012873558 cites W647141272 @default.
- W3012873558 doi "https://doi.org/10.1016/j.carbon.2020.03.038" @default.
- W3012873558 hasPublicationYear "2020" @default.
- W3012873558 type Work @default.
- W3012873558 sameAs 3012873558 @default.
- W3012873558 citedByCount "27" @default.
- W3012873558 countsByYear W30128735582020 @default.
- W3012873558 countsByYear W30128735582021 @default.
- W3012873558 countsByYear W30128735582022 @default.
- W3012873558 countsByYear W30128735582023 @default.
- W3012873558 crossrefType "journal-article" @default.
- W3012873558 hasAuthorship W3012873558A5000118406 @default.
- W3012873558 hasAuthorship W3012873558A5039747194 @default.
- W3012873558 hasAuthorship W3012873558A5082719155 @default.
- W3012873558 hasConcept C104304963 @default.
- W3012873558 hasConcept C114221277 @default.
- W3012873558 hasConcept C121332964 @default.
- W3012873558 hasConcept C132459708 @default.
- W3012873558 hasConcept C134306372 @default.
- W3012873558 hasConcept C138885662 @default.
- W3012873558 hasConcept C154945302 @default.
- W3012873558 hasConcept C159985019 @default.
- W3012873558 hasConcept C171250308 @default.
- W3012873558 hasConcept C186060115 @default.
- W3012873558 hasConcept C192562407 @default.
- W3012873558 hasConcept C21036866 @default.
- W3012873558 hasConcept C26873012 @default.
- W3012873558 hasConcept C30080830 @default.
- W3012873558 hasConcept C33923547 @default.
- W3012873558 hasConcept C41008148 @default.
- W3012873558 hasConcept C41895202 @default.
- W3012873558 hasConcept C43369102 @default.
- W3012873558 hasConcept C50644808 @default.
- W3012873558 hasConcept C81363708 @default.
- W3012873558 hasConcept C86803240 @default.
- W3012873558 hasConceptScore W3012873558C104304963 @default.
- W3012873558 hasConceptScore W3012873558C114221277 @default.
- W3012873558 hasConceptScore W3012873558C121332964 @default.
- W3012873558 hasConceptScore W3012873558C132459708 @default.
- W3012873558 hasConceptScore W3012873558C134306372 @default.