Matches in SemOpenAlex for { <https://semopenalex.org/work/W3012938200> ?p ?o ?g. }
- W3012938200 endingPage "109427" @default.
- W3012938200 startingPage "109427" @default.
- W3012938200 abstract "Soil pollution from heavy metals poses a serious risk for environment and public health. Phytoremediation is an eco-friendly and cheaper alternative compared to chemical-physical techniques. We carried out in vitro tests where three microorganisms Trichoderma harzianum, Saccharomyces cerevisiae and Wickerhamomyces anomalus were exposed to eight different heavy metals (one metal at a time) in order to evaluate resistance, growth and bioaccumulation capability for each metal (Ni, Cd, Cu, V, Zn, As, Pb, Hg). Taking into account the natural characteristics of T. harzianum, (resistance to environmental stress, resistance to pathogenic fungi, ability to establish symbiotic relationships with superior green plants) and the good bioaccumulation capacity for V, As, Cd, Hg, Pb shown after in vitro tests, it was chosen as a microorganism to be used in greenhouse tests. Controlled exposure tests were performed in greenhouse, where Arundo donax and mycorrhized Arundo donax with T. harzianum were exposed for 7 months at two different doses (L1 and L2) of a heavy metal mix, so as to assess whether the symbiotic association could improve the bioaccumulation capability of the superior green plant A. donax. Heavy metals were determined with ICP-MS. The average bioaccumulation percentage values of A. donax for L1 and L2 were, respectively: Ni (31%, 26%); Cd (35%, 50%); Cu (30%, 35%); As (19%, 27%); Pb (18%, 14%); Hg (42%, 45%); V (39%, 26%); Zn (23%, 9%). The average bioaccumulation percentage values of mycorrhized A. donax with T. harzianum for L1 and L2 were, respectively: Ni (27%, 38%); Cd (44%, 42%); Cu (36%, 29%); As (17%, 23%); Pb (37%, 54%); Hg (44%, 60%); V (16%, 20%); Zn (14%, 7%). A. donax showed the highest BAF (bioaccumulation factor) for Cd (0.50), Cu (0.35), As (0.27) and Hg (0.45) after exposure to L2; mycorrhized A. donax with T. harzianum showed the highest BAF for Ni (0.38), Cd (0.42), Pb (0.54) and Hg (0.60) after exposure to L2. A. donax showed the highest TF (translocation factor) values for Cd (0.28) and Hg (0.26) after exposition at L1 and L2 respectively; A. donax mycorrhized with T. harzianum showed the highest TF values for Cd (0.70), As (0.56), V (0.24), Pb (0.18) after exposition at L2, and Zn (0.30) after exposition at L1. Our study showed a good growth capability in contaminated soils and a good bioaccumulation capability of heavy metals, both for A. donax and mycorrhized A. donax with T. harzianum. Furthermore, for three metals (Ni, Pb and Hg) the bioaccumulation capability was improved by the symbiosis of T. harzianum with A. donax. So, these results proved the suitability both for A. donax and mycorrhized A. donax with T. harzianum for phytoremediation processes." @default.
- W3012938200 created "2020-03-27" @default.
- W3012938200 creator A5006874976 @default.
- W3012938200 creator A5028663970 @default.
- W3012938200 creator A5030668912 @default.
- W3012938200 creator A5045431446 @default.
- W3012938200 creator A5066008114 @default.
- W3012938200 creator A5073314275 @default.
- W3012938200 creator A5078615947 @default.
- W3012938200 creator A5082476384 @default.
- W3012938200 creator A5084371828 @default.
- W3012938200 creator A5085090777 @default.
- W3012938200 date "2020-06-01" @default.
- W3012938200 modified "2023-10-05" @default.
- W3012938200 title "Phytoremediation potential of Arundo donax (Giant Reed) in contaminated soil by heavy metals" @default.
- W3012938200 cites W1120753171 @default.
- W3012938200 cites W1807668467 @default.
- W3012938200 cites W1967129844 @default.
- W3012938200 cites W1970927839 @default.
- W3012938200 cites W1974001686 @default.
- W3012938200 cites W1980448616 @default.
- W3012938200 cites W1980508443 @default.
- W3012938200 cites W1982651734 @default.
- W3012938200 cites W1982927441 @default.
- W3012938200 cites W1988780738 @default.
- W3012938200 cites W1989471358 @default.
- W3012938200 cites W2007762983 @default.
- W3012938200 cites W2012862729 @default.
- W3012938200 cites W2014096918 @default.
- W3012938200 cites W2014267660 @default.
- W3012938200 cites W2014769468 @default.
- W3012938200 cites W2017120318 @default.
- W3012938200 cites W2039546913 @default.
- W3012938200 cites W2044900312 @default.
- W3012938200 cites W2050776357 @default.
- W3012938200 cites W2053326521 @default.
- W3012938200 cites W2055255802 @default.
- W3012938200 cites W2057960557 @default.
- W3012938200 cites W2058391549 @default.
- W3012938200 cites W2095334034 @default.
- W3012938200 cites W2113604537 @default.
- W3012938200 cites W2116459869 @default.
- W3012938200 cites W2117933268 @default.
- W3012938200 cites W2126250287 @default.
- W3012938200 cites W2133919710 @default.
- W3012938200 cites W2137471770 @default.
- W3012938200 cites W2228338508 @default.
- W3012938200 cites W2405362861 @default.
- W3012938200 cites W2463865074 @default.
- W3012938200 cites W2522129040 @default.
- W3012938200 cites W2524714554 @default.
- W3012938200 cites W2581044358 @default.
- W3012938200 cites W2593131851 @default.
- W3012938200 cites W2603801356 @default.
- W3012938200 cites W2725382153 @default.
- W3012938200 cites W2742504379 @default.
- W3012938200 cites W2747454142 @default.
- W3012938200 cites W2767059497 @default.
- W3012938200 cites W2767913241 @default.
- W3012938200 cites W2773300096 @default.
- W3012938200 cites W2789641294 @default.
- W3012938200 cites W2791548582 @default.
- W3012938200 cites W2792003548 @default.
- W3012938200 cites W2792009320 @default.
- W3012938200 cites W2807118768 @default.
- W3012938200 cites W2892284846 @default.
- W3012938200 cites W2907205883 @default.
- W3012938200 cites W2921618546 @default.
- W3012938200 cites W2928772646 @default.
- W3012938200 cites W2940000005 @default.
- W3012938200 cites W2951492660 @default.
- W3012938200 cites W2973521758 @default.
- W3012938200 doi "https://doi.org/10.1016/j.envres.2020.109427" @default.
- W3012938200 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32247150" @default.
- W3012938200 hasPublicationYear "2020" @default.
- W3012938200 type Work @default.
- W3012938200 sameAs 3012938200 @default.
- W3012938200 citedByCount "58" @default.
- W3012938200 countsByYear W30129382002020 @default.
- W3012938200 countsByYear W30129382002021 @default.
- W3012938200 countsByYear W30129382002022 @default.
- W3012938200 countsByYear W30129382002023 @default.
- W3012938200 crossrefType "journal-article" @default.
- W3012938200 hasAuthorship W3012938200A5006874976 @default.
- W3012938200 hasAuthorship W3012938200A5028663970 @default.
- W3012938200 hasAuthorship W3012938200A5030668912 @default.
- W3012938200 hasAuthorship W3012938200A5045431446 @default.
- W3012938200 hasAuthorship W3012938200A5066008114 @default.
- W3012938200 hasAuthorship W3012938200A5073314275 @default.
- W3012938200 hasAuthorship W3012938200A5078615947 @default.
- W3012938200 hasAuthorship W3012938200A5082476384 @default.
- W3012938200 hasAuthorship W3012938200A5084371828 @default.
- W3012938200 hasAuthorship W3012938200A5085090777 @default.
- W3012938200 hasBestOaLocation W30129382001 @default.
- W3012938200 hasConcept C104727253 @default.
- W3012938200 hasConcept C107872376 @default.
- W3012938200 hasConcept C112570922 @default.
- W3012938200 hasConcept C115540264 @default.