Matches in SemOpenAlex for { <https://semopenalex.org/work/W3013128977> ?p ?o ?g. }
- W3013128977 endingPage "2880" @default.
- W3013128977 startingPage "2869" @default.
- W3013128977 abstract "Purpose Clinical use of dedicated breast computed tomography (bCT) requires relatively short scan times necessitating systems with high frame rates. This in turn impacts the x‐ray tube operating range. We characterize the effects of tube voltage, beam filtration, dose, and object size on contrast and noise properties related to soft tissue and iodine contrast agents as a way to optimize imaging protocols for soft tissue and iodine contrast at high frame rates. Methods This study design uses the signal‐difference‐to‐noise ratio (SDNR), noise‐equivalent quanta (NEQ), and detectability ( d ´) as measures of imaging performance for a prototype breast CT scanner that utilizes a pulsed x‐ray tube (with a 4 ms pulse width) at 43.5 fps acquisition rate. We assess a range of kV, filtration, breast phantom size, and mean glandular dose (MGD). Performance measures are estimated from images of adipose‐equivalent breast phantoms machined to have a representative size and shape of small, medium, and large breasts. Water (glandular tissue equivalent) and iodine contrast (5 mg/ml) were used to fill two cylindrical wells in the phantoms. Results Air kerma levels required for obtaining an MGD of 6 mGy ranged from 7.1 to 9.1 mGy and are reported across all kV, filtration, and breast phantom sizes. However, at 50 kV, the thick filters (0.3 mm of Cu or Gd) exceeded the maximum available mA of the x‐ray generator, and hence, these conditions were excluded from subsequent analysis. There was a strong positive association between measurements of SDNR and d’ ( R 2 > 0.97) within the range of parameters investigated in this work. A significant decrease in soft tissue SDNR was observed for increasing phantom size and increasing kV with a maximum SDNR at 50 kV with 0.2 mm Cu or 0.2 mm Gd filtration. For iodine contrast SDNR, a significant decrease was observed with increasing phantom size, but a decrease in SDNR for increasing kV was only observed for 70 kV (50 and 60 kV were not significantly different). Thicker Gd filtration (0.3 mm Gd) resulted in a significant increase in iodine SDNR and decrease in soft tissue SDNR but requires significantly more tube current to deliver the same MGD. Conclusions The choice of 60 kV with 0.2 mm Gd filtration provides a good trade‐off for maximizing both soft tissue and iodine contrast. This scanning technique takes advantage of the ~50 keV Gd k‐edge to produce contrast and can be achieved within operating range of the x‐ray generator used in this work. Imaging at 60 kV allows for a greater range in dose delivered to the large breast sizes when uniform image quality is desired across all breast sizes. While imaging performance metrics (i.e., detectability index and SDNR) were shown to be strongly correlated, the methodologies presented in this work for the estimation of NEQ (and subsequently d ') provides a meaningful description of the spatial resolution and noise characteristics of this prototype bCT system across a range of beam quality, dose, and object sizes." @default.
- W3013128977 created "2020-04-03" @default.
- W3013128977 creator A5002510368 @default.
- W3013128977 creator A5039657761 @default.
- W3013128977 creator A5065544642 @default.
- W3013128977 creator A5066737125 @default.
- W3013128977 creator A5083137178 @default.
- W3013128977 date "2020-04-27" @default.
- W3013128977 modified "2023-10-15" @default.
- W3013128977 title "Effects of kV, filtration, dose, and object size on soft tissue and iodine contrast in dedicated breast CT" @default.
- W3013128977 cites W1927199984 @default.
- W3013128977 cites W1963659938 @default.
- W3013128977 cites W1989693788 @default.
- W3013128977 cites W1991055384 @default.
- W3013128977 cites W1991951294 @default.
- W3013128977 cites W2008521294 @default.
- W3013128977 cites W2012625613 @default.
- W3013128977 cites W2013138125 @default.
- W3013128977 cites W2015323553 @default.
- W3013128977 cites W2016436561 @default.
- W3013128977 cites W2020585077 @default.
- W3013128977 cites W2022947079 @default.
- W3013128977 cites W2029860284 @default.
- W3013128977 cites W2032138177 @default.
- W3013128977 cites W2034105142 @default.
- W3013128977 cites W2036916465 @default.
- W3013128977 cites W2040415613 @default.
- W3013128977 cites W2042027138 @default.
- W3013128977 cites W2058860976 @default.
- W3013128977 cites W2066140474 @default.
- W3013128977 cites W2068159634 @default.
- W3013128977 cites W2078163388 @default.
- W3013128977 cites W2089070706 @default.
- W3013128977 cites W2093476549 @default.
- W3013128977 cites W2110065044 @default.
- W3013128977 cites W2110445810 @default.
- W3013128977 cites W2123683167 @default.
- W3013128977 cites W2130582349 @default.
- W3013128977 cites W2131613420 @default.
- W3013128977 cites W2150209283 @default.
- W3013128977 cites W2157812230 @default.
- W3013128977 cites W2345638687 @default.
- W3013128977 cites W2580375600 @default.
- W3013128977 cites W2596530362 @default.
- W3013128977 cites W2736294777 @default.
- W3013128977 cites W2742239693 @default.
- W3013128977 cites W2799472796 @default.
- W3013128977 cites W2826898868 @default.
- W3013128977 cites W2911155789 @default.
- W3013128977 cites W2921821726 @default.
- W3013128977 cites W2945885608 @default.
- W3013128977 doi "https://doi.org/10.1002/mp.14159" @default.
- W3013128977 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7771224" @default.
- W3013128977 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32233091" @default.
- W3013128977 hasPublicationYear "2020" @default.
- W3013128977 type Work @default.
- W3013128977 sameAs 3013128977 @default.
- W3013128977 citedByCount "11" @default.
- W3013128977 countsByYear W30131289772020 @default.
- W3013128977 countsByYear W30131289772021 @default.
- W3013128977 countsByYear W30131289772022 @default.
- W3013128977 countsByYear W30131289772023 @default.
- W3013128977 crossrefType "journal-article" @default.
- W3013128977 hasAuthorship W3013128977A5002510368 @default.
- W3013128977 hasAuthorship W3013128977A5039657761 @default.
- W3013128977 hasAuthorship W3013128977A5065544642 @default.
- W3013128977 hasAuthorship W3013128977A5066737125 @default.
- W3013128977 hasAuthorship W3013128977A5083137178 @default.
- W3013128977 hasBestOaLocation W30131289772 @default.
- W3013128977 hasConcept C104293457 @default.
- W3013128977 hasConcept C105795698 @default.
- W3013128977 hasConcept C120665830 @default.
- W3013128977 hasConcept C121332964 @default.
- W3013128977 hasConcept C121608353 @default.
- W3013128977 hasConcept C126322002 @default.
- W3013128977 hasConcept C128489963 @default.
- W3013128977 hasConcept C136229726 @default.
- W3013128977 hasConcept C178639098 @default.
- W3013128977 hasConcept C192562407 @default.
- W3013128977 hasConcept C2777432617 @default.
- W3013128977 hasConcept C2779751349 @default.
- W3013128977 hasConcept C2780472235 @default.
- W3013128977 hasConcept C2989005 @default.
- W3013128977 hasConcept C33923547 @default.
- W3013128977 hasConcept C530470458 @default.
- W3013128977 hasConcept C71924100 @default.
- W3013128977 hasConcept C75088862 @default.
- W3013128977 hasConceptScore W3013128977C104293457 @default.
- W3013128977 hasConceptScore W3013128977C105795698 @default.
- W3013128977 hasConceptScore W3013128977C120665830 @default.
- W3013128977 hasConceptScore W3013128977C121332964 @default.
- W3013128977 hasConceptScore W3013128977C121608353 @default.
- W3013128977 hasConceptScore W3013128977C126322002 @default.
- W3013128977 hasConceptScore W3013128977C128489963 @default.
- W3013128977 hasConceptScore W3013128977C136229726 @default.
- W3013128977 hasConceptScore W3013128977C178639098 @default.
- W3013128977 hasConceptScore W3013128977C192562407 @default.
- W3013128977 hasConceptScore W3013128977C2777432617 @default.