Matches in SemOpenAlex for { <https://semopenalex.org/work/W3013221435> ?p ?o ?g. }
Showing items 1 to 82 of
82
with 100 items per page.
- W3013221435 endingPage "62705" @default.
- W3013221435 startingPage "62698" @default.
- W3013221435 abstract "There is no objective biological indicator for the diagnosis of schizophrenia. Machine learning is used to classify functional magnetic resonance imaging (fMRI) data, the aim of which is to effectively improve the reliability of diagnostics for schizophrenia. The following points are often considered: 1) Extracting effective features from fMRI data. 2) Choosing an appropriate machine learning method. 3) Improving classification accuracy. In this paper, we propose a weighted deep forest model, which includes a weighted class vector, and a prediction class vector. In our experiment, we extract functional connection (FC) features from fMRI data. Then, we use principal component analysis (PCA) to reduce the dimension of FC features. For datasets with unbalanced data, we use SMOTE to balance the data. Finally, the datasets with balanced data are fed into the weighted forest model. Compared with the classification results obtained by traditional classifiers, our classification accuracy is better. This method will provide greater possibilities for assisting doctors in diagnosing schizophrenia. This paper has significance for the study of schizophrenia by helping doctors diagnose the disease." @default.
- W3013221435 created "2020-04-03" @default.
- W3013221435 creator A5003985417 @default.
- W3013221435 creator A5019833169 @default.
- W3013221435 creator A5020531996 @default.
- W3013221435 creator A5043684189 @default.
- W3013221435 creator A5053329886 @default.
- W3013221435 date "2020-01-01" @default.
- W3013221435 modified "2023-10-17" @default.
- W3013221435 title "Weighted Deep Forest for Schizophrenia Data Classification" @default.
- W3013221435 cites W1457602677 @default.
- W3013221435 cites W1605688901 @default.
- W3013221435 cites W1970495180 @default.
- W3013221435 cites W1993220166 @default.
- W3013221435 cites W2036816374 @default.
- W3013221435 cites W2053366311 @default.
- W3013221435 cites W2058046532 @default.
- W3013221435 cites W2061564920 @default.
- W3013221435 cites W2099369243 @default.
- W3013221435 cites W2104575449 @default.
- W3013221435 cites W2140606211 @default.
- W3013221435 cites W2148143831 @default.
- W3013221435 cites W2153779995 @default.
- W3013221435 cites W2160451891 @default.
- W3013221435 cites W2294798173 @default.
- W3013221435 cites W2337323496 @default.
- W3013221435 cites W2592340788 @default.
- W3013221435 cites W2762517398 @default.
- W3013221435 cites W2772564583 @default.
- W3013221435 cites W2889707450 @default.
- W3013221435 cites W2902620820 @default.
- W3013221435 cites W2950023118 @default.
- W3013221435 cites W2974016242 @default.
- W3013221435 cites W4252374256 @default.
- W3013221435 doi "https://doi.org/10.1109/access.2020.2983317" @default.
- W3013221435 hasPublicationYear "2020" @default.
- W3013221435 type Work @default.
- W3013221435 sameAs 3013221435 @default.
- W3013221435 citedByCount "10" @default.
- W3013221435 countsByYear W30132214352021 @default.
- W3013221435 countsByYear W30132214352022 @default.
- W3013221435 countsByYear W30132214352023 @default.
- W3013221435 crossrefType "journal-article" @default.
- W3013221435 hasAuthorship W3013221435A5003985417 @default.
- W3013221435 hasAuthorship W3013221435A5019833169 @default.
- W3013221435 hasAuthorship W3013221435A5020531996 @default.
- W3013221435 hasAuthorship W3013221435A5043684189 @default.
- W3013221435 hasAuthorship W3013221435A5053329886 @default.
- W3013221435 hasBestOaLocation W30132214351 @default.
- W3013221435 hasConcept C153180895 @default.
- W3013221435 hasConcept C154945302 @default.
- W3013221435 hasConcept C199360897 @default.
- W3013221435 hasConcept C2776412080 @default.
- W3013221435 hasConcept C41008148 @default.
- W3013221435 hasConceptScore W3013221435C153180895 @default.
- W3013221435 hasConceptScore W3013221435C154945302 @default.
- W3013221435 hasConceptScore W3013221435C199360897 @default.
- W3013221435 hasConceptScore W3013221435C2776412080 @default.
- W3013221435 hasConceptScore W3013221435C41008148 @default.
- W3013221435 hasFunder F4320333335 @default.
- W3013221435 hasFunder F4320335777 @default.
- W3013221435 hasFunder F4320335787 @default.
- W3013221435 hasLocation W30132214351 @default.
- W3013221435 hasOpenAccess W3013221435 @default.
- W3013221435 hasPrimaryLocation W30132214351 @default.
- W3013221435 hasRelatedWork W1978450727 @default.
- W3013221435 hasRelatedWork W2033914206 @default.
- W3013221435 hasRelatedWork W2146076056 @default.
- W3013221435 hasRelatedWork W2147291813 @default.
- W3013221435 hasRelatedWork W2163831990 @default.
- W3013221435 hasRelatedWork W2378160586 @default.
- W3013221435 hasRelatedWork W2380927352 @default.
- W3013221435 hasRelatedWork W3003836766 @default.
- W3013221435 hasRelatedWork W4244943737 @default.
- W3013221435 hasRelatedWork W2289108895 @default.
- W3013221435 hasVolume "8" @default.
- W3013221435 isParatext "false" @default.
- W3013221435 isRetracted "false" @default.
- W3013221435 magId "3013221435" @default.
- W3013221435 workType "article" @default.