Matches in SemOpenAlex for { <https://semopenalex.org/work/W3013223634> ?p ?o ?g. }
Showing items 1 to 82 of
82
with 100 items per page.
- W3013223634 abstract "Robust wireless communication systems are expected to have high transmission data rate, system capacity and quality of service. Utilizing multi-carrier modulation technique like orthogonal frequency division multiplexing (OFDM) with multiple-input and multiple-output (MIMO) signal processing provides a promising solution for acquiring high data rates and system capacity respectively. Additionally, the performance of the communication system can be improved by applying space-time block coding (STBC). In such aggregated system channel estimation is essential for accurate reception of the transmitted signals. The main problem associated with state of art channel estimation is the use of slow gradient descent based learning algorithms that suffers from local minima entrapment. Therefore, this paper suggests a genetic algorithm optimized artificial neural network (GA-ANN) based channel estimation technique for STBC-MIMO-OFDM system because of its global optimization property. The performance of the proposed estimator is evaluated using bit error rate (BER) to signal to noise ratio (SNR) graphs and compared with least square (LS) and minimum mean square error (MMSE) algorithms. According to simulation results the GA-ANN performed better than LS and MMSE estimators at higher SNR values but was close to the MMSE algorithm at lower SNR values. As the selected algorithm uses a supervised learning process, a tradeoff is made between bandwidth efficiency and accurate estimation." @default.
- W3013223634 created "2020-04-03" @default.
- W3013223634 creator A5010135570 @default.
- W3013223634 creator A5025233443 @default.
- W3013223634 creator A5064315238 @default.
- W3013223634 date "2020-01-01" @default.
- W3013223634 modified "2023-09-27" @default.
- W3013223634 title "Channel Estimation in Space Time Block Coded MIMO-OFDM System using Genetically Evolved Artificial Neural Network" @default.
- W3013223634 cites W1502009091 @default.
- W3013223634 cites W1565420456 @default.
- W3013223634 cites W1627578742 @default.
- W3013223634 cites W2036962080 @default.
- W3013223634 cites W2047424115 @default.
- W3013223634 cites W2053284266 @default.
- W3013223634 cites W2072245049 @default.
- W3013223634 cites W2128175452 @default.
- W3013223634 cites W2257532474 @default.
- W3013223634 cites W2554184412 @default.
- W3013223634 cites W2559450403 @default.
- W3013223634 cites W2591637463 @default.
- W3013223634 cites W2610472098 @default.
- W3013223634 cites W2771472003 @default.
- W3013223634 cites W2808818742 @default.
- W3013223634 cites W4205533812 @default.
- W3013223634 cites W4230323742 @default.
- W3013223634 cites W877915284 @default.
- W3013223634 doi "https://doi.org/10.1109/ibcast47879.2020.9044539" @default.
- W3013223634 hasPublicationYear "2020" @default.
- W3013223634 type Work @default.
- W3013223634 sameAs 3013223634 @default.
- W3013223634 citedByCount "4" @default.
- W3013223634 countsByYear W30132236342021 @default.
- W3013223634 countsByYear W30132236342022 @default.
- W3013223634 crossrefType "proceedings-article" @default.
- W3013223634 hasAuthorship W3013223634A5010135570 @default.
- W3013223634 hasAuthorship W3013223634A5025233443 @default.
- W3013223634 hasAuthorship W3013223634A5064315238 @default.
- W3013223634 hasConcept C11413529 @default.
- W3013223634 hasConcept C127162648 @default.
- W3013223634 hasConcept C127413603 @default.
- W3013223634 hasConcept C130946814 @default.
- W3013223634 hasConcept C154945302 @default.
- W3013223634 hasConcept C207987634 @default.
- W3013223634 hasConcept C24326235 @default.
- W3013223634 hasConcept C2524010 @default.
- W3013223634 hasConcept C2777210771 @default.
- W3013223634 hasConcept C33923547 @default.
- W3013223634 hasConcept C40409654 @default.
- W3013223634 hasConcept C41008148 @default.
- W3013223634 hasConcept C50644808 @default.
- W3013223634 hasConcept C76155785 @default.
- W3013223634 hasConceptScore W3013223634C11413529 @default.
- W3013223634 hasConceptScore W3013223634C127162648 @default.
- W3013223634 hasConceptScore W3013223634C127413603 @default.
- W3013223634 hasConceptScore W3013223634C130946814 @default.
- W3013223634 hasConceptScore W3013223634C154945302 @default.
- W3013223634 hasConceptScore W3013223634C207987634 @default.
- W3013223634 hasConceptScore W3013223634C24326235 @default.
- W3013223634 hasConceptScore W3013223634C2524010 @default.
- W3013223634 hasConceptScore W3013223634C2777210771 @default.
- W3013223634 hasConceptScore W3013223634C33923547 @default.
- W3013223634 hasConceptScore W3013223634C40409654 @default.
- W3013223634 hasConceptScore W3013223634C41008148 @default.
- W3013223634 hasConceptScore W3013223634C50644808 @default.
- W3013223634 hasConceptScore W3013223634C76155785 @default.
- W3013223634 hasLocation W30132236341 @default.
- W3013223634 hasOpenAccess W3013223634 @default.
- W3013223634 hasPrimaryLocation W30132236341 @default.
- W3013223634 hasRelatedWork W1982454348 @default.
- W3013223634 hasRelatedWork W1984489278 @default.
- W3013223634 hasRelatedWork W2002623807 @default.
- W3013223634 hasRelatedWork W2132640593 @default.
- W3013223634 hasRelatedWork W2177644409 @default.
- W3013223634 hasRelatedWork W2347830033 @default.
- W3013223634 hasRelatedWork W2364260152 @default.
- W3013223634 hasRelatedWork W2893012547 @default.
- W3013223634 hasRelatedWork W2941767805 @default.
- W3013223634 hasRelatedWork W3203284130 @default.
- W3013223634 isParatext "false" @default.
- W3013223634 isRetracted "false" @default.
- W3013223634 magId "3013223634" @default.
- W3013223634 workType "article" @default.