Matches in SemOpenAlex for { <https://semopenalex.org/work/W3013253553> ?p ?o ?g. }
- W3013253553 endingPage "116213" @default.
- W3013253553 startingPage "116213" @default.
- W3013253553 abstract "Abstract The Ti-in-quartz thermobarometer has a wide potential for constraining crystallization pressure and temperature of quartz in natural geological systems. However, there is a long-lasting debate on the applicability of two models that were proposed previously, based on the equilibration of quartz with Ti-bearing aqueous fluids. In this study, the Ti-in-quartz thermobarometer was calibrated based on partitioning data of Ti between quartz and aluminosilicate melt in the pressure and temperature range of 0.5−4 kbar and 700−900 °C, which are conditions relevant for high-silica magmas stored at crustal depths. For seventeen experiments, in which both quartz, rutile and high-silica glass are present as experimental products (i.e., activity of TiO2 in silicate melt equals to unity), the Ti concentrations in quartz can be modeled with the following equation: log C Ti Qtz = 5.3226 − 1948.4 / T − 981.4 ⁎ P 0.2 / T , in which C Ti Qtz is the Ti concentration (ppm) in quartz, T is temperature in kelvin and P is pressure in kbar. Based on the data from this study and a previous work of Hayden and Watson (2007) , we modeled the dependence of rutile (TiO2) solubility in silicic melt on temperature, pressure and melt composition, which can be expressed as log ( S Ti liq ) = 6.5189 − 3006.5 / T − 461.0 ⁎ P 0.2 / T + 0.1155 ⁎ FM , in which S Ti liq is Ti solubility (ppm) at rutile saturation and FM is a parameter accounting for melt compositional effect, computed as FM = ( Na + K + 2 Ca + 2 Mg + 2 Fe ) / ( Si ⁎ Al ) , in which the chemical symbols denote molar fractions of each cation. Combining the two models presented above as well as some additional experimental data at activity of TiO2 log ( C Ti Qtz / C Ti liq ) = − 1.1963 + ( 1058.1 − 520.4 ⁎ P 0.2 ) / T − 0.1155 ⁎ FM , in which C Ti liq is Ti concentration (ppm) in melt. Assuming an uncertainty of input temperature of ±25 °C, the corresponding pressure can be determined within ±0.2 kbar. However, the Ti concentrations in quartz and glass need to be determined with a high precision. Typical values of the ratio C Ti Qtz / C Ti liq in natural systems vary in the range from ∼0.09 to ∼0.13, corresponding to a change of pressure from ∼5 to ∼1 kbar assuming a temperature of ∼800 °C. The model above was applied to natural datasets obtained for several silicic eruptions (i.e. Oruanui Rhyolite, Early Bishop Tuff, Toba Tuff, Upper Bandelier Tuff). The analyses of quartz and glass inclusions in quartz indicate that the pre-eruptive magma storage pressures are mainly in the range 2–4 kbar. These pressures are consistent to or slightly higher than the maximum value estimated previously from the analysis of H2O-CO2 in glass inclusions, indicating a possible post-entrapment loss of hydrogen from melt inclusions and that gas saturation provides a minimum estimation of pressure." @default.
- W3013253553 created "2020-04-03" @default.
- W3013253553 creator A5013976612 @default.
- W3013253553 creator A5022343313 @default.
- W3013253553 creator A5052189114 @default.
- W3013253553 creator A5052802142 @default.
- W3013253553 creator A5079580286 @default.
- W3013253553 creator A5089079624 @default.
- W3013253553 date "2020-05-01" @default.
- W3013253553 modified "2023-10-04" @default.
- W3013253553 title "Ti-in-quartz thermobarometry and TiO2 solubility in rhyolitic melts: New experiments and parametrization" @default.
- W3013253553 cites W1536900994 @default.
- W3013253553 cites W1969375798 @default.
- W3013253553 cites W1972712810 @default.
- W3013253553 cites W1973477988 @default.
- W3013253553 cites W1976037363 @default.
- W3013253553 cites W1976676700 @default.
- W3013253553 cites W1993564178 @default.
- W3013253553 cites W1998886247 @default.
- W3013253553 cites W2002825394 @default.
- W3013253553 cites W2005616801 @default.
- W3013253553 cites W2005800726 @default.
- W3013253553 cites W2018050219 @default.
- W3013253553 cites W2019049432 @default.
- W3013253553 cites W2031667792 @default.
- W3013253553 cites W2037705816 @default.
- W3013253553 cites W2040468731 @default.
- W3013253553 cites W2041389048 @default.
- W3013253553 cites W2041989597 @default.
- W3013253553 cites W2054058952 @default.
- W3013253553 cites W2054791696 @default.
- W3013253553 cites W2077314055 @default.
- W3013253553 cites W2077368620 @default.
- W3013253553 cites W2078601513 @default.
- W3013253553 cites W2080539747 @default.
- W3013253553 cites W2085064498 @default.
- W3013253553 cites W2089561399 @default.
- W3013253553 cites W2093014852 @default.
- W3013253553 cites W2099138418 @default.
- W3013253553 cites W2100772541 @default.
- W3013253553 cites W2105208562 @default.
- W3013253553 cites W2118649177 @default.
- W3013253553 cites W2131817581 @default.
- W3013253553 cites W2143060221 @default.
- W3013253553 cites W2143575325 @default.
- W3013253553 cites W2155146104 @default.
- W3013253553 cites W2188464786 @default.
- W3013253553 cites W2488465050 @default.
- W3013253553 cites W2517397417 @default.
- W3013253553 cites W2520256038 @default.
- W3013253553 cites W2548606595 @default.
- W3013253553 cites W2594627818 @default.
- W3013253553 cites W2607229615 @default.
- W3013253553 cites W2737174573 @default.
- W3013253553 cites W2805181043 @default.
- W3013253553 cites W2896903625 @default.
- W3013253553 cites W2901661591 @default.
- W3013253553 cites W2919073116 @default.
- W3013253553 cites W2936412050 @default.
- W3013253553 doi "https://doi.org/10.1016/j.epsl.2020.116213" @default.
- W3013253553 hasPublicationYear "2020" @default.
- W3013253553 type Work @default.
- W3013253553 sameAs 3013253553 @default.
- W3013253553 citedByCount "23" @default.
- W3013253553 countsByYear W30132535532020 @default.
- W3013253553 countsByYear W30132535532021 @default.
- W3013253553 countsByYear W30132535532022 @default.
- W3013253553 countsByYear W30132535532023 @default.
- W3013253553 crossrefType "journal-article" @default.
- W3013253553 hasAuthorship W3013253553A5013976612 @default.
- W3013253553 hasAuthorship W3013253553A5022343313 @default.
- W3013253553 hasAuthorship W3013253553A5052189114 @default.
- W3013253553 hasAuthorship W3013253553A5052802142 @default.
- W3013253553 hasAuthorship W3013253553A5079580286 @default.
- W3013253553 hasAuthorship W3013253553A5089079624 @default.
- W3013253553 hasConcept C120806208 @default.
- W3013253553 hasConcept C121332964 @default.
- W3013253553 hasConcept C127313418 @default.
- W3013253553 hasConcept C147789679 @default.
- W3013253553 hasConcept C151730666 @default.
- W3013253553 hasConcept C155574463 @default.
- W3013253553 hasConcept C17409809 @default.
- W3013253553 hasConcept C185592680 @default.
- W3013253553 hasConcept C192241223 @default.
- W3013253553 hasConcept C199289684 @default.
- W3013253553 hasConcept C202887219 @default.
- W3013253553 hasConcept C25822816 @default.
- W3013253553 hasConcept C2779870107 @default.
- W3013253553 hasConcept C62520636 @default.
- W3013253553 hasConcept C74902906 @default.
- W3013253553 hasConceptScore W3013253553C120806208 @default.
- W3013253553 hasConceptScore W3013253553C121332964 @default.
- W3013253553 hasConceptScore W3013253553C127313418 @default.
- W3013253553 hasConceptScore W3013253553C147789679 @default.
- W3013253553 hasConceptScore W3013253553C151730666 @default.
- W3013253553 hasConceptScore W3013253553C155574463 @default.
- W3013253553 hasConceptScore W3013253553C17409809 @default.
- W3013253553 hasConceptScore W3013253553C185592680 @default.