Matches in SemOpenAlex for { <https://semopenalex.org/work/W3013265764> ?p ?o ?g. }
Showing items 1 to 86 of
86
with 100 items per page.
- W3013265764 endingPage "430" @default.
- W3013265764 startingPage "412" @default.
- W3013265764 abstract "Tensor decomposition has been shown, time and time again, to be an effective tool in multiaspect data mining, especially in exploratory applications where the interest is in discovering hidden interpretable structure from the data. In such exploratory applications, the number of such hidden structures is of utmost importance since incorrect selection may imply the discovery of noisy artifacts that do not really represent a meaningful pattern. Although extremely important, selection of this number of latent factors, also known as low-rank, is very hard, and in most cases, practitioners and researchers resort to ad hoc trial-and-error or assume that somehow this number is known or is given via domain expertise. There has been a considerable amount of prior work that proposes heuristics for selecting this low rank. However, as we argue in this article, the state of the art in those heuristic methods is rather unstable and does not always reveal the correct answer. In this article, we propose the Normalized Singular Value Deviation (NSVD), a novel method for selecting the number of latent factors in Tensor Decomposition that is based on principled theoretical foundations. We extensively evaluate the effectiveness of NSVD in synthetic and real data and demonstrate that it yields a more robust, stable, and reliable estimation than state of the art. Finally, we provide an efficient compression scheme for facilitating the use of NSVD in very big tensors." @default.
- W3013265764 created "2020-04-03" @default.
- W3013265764 creator A5026125754 @default.
- W3013265764 creator A5054849323 @default.
- W3013265764 date "2020-10-01" @default.
- W3013265764 modified "2023-10-14" @default.
- W3013265764 title "<i>NSVD</i>: Normalized Singular Value Deviation Reveals Number of Latent Factors in Tensor Decomposition" @default.
- W3013265764 cites W1613865062 @default.
- W3013265764 cites W1870903031 @default.
- W3013265764 cites W1981512030 @default.
- W3013265764 cites W1994219736 @default.
- W3013265764 cites W2000215628 @default.
- W3013265764 cites W2012910063 @default.
- W3013265764 cites W2037271374 @default.
- W3013265764 cites W2051126420 @default.
- W3013265764 cites W2057503509 @default.
- W3013265764 cites W2079705627 @default.
- W3013265764 cites W2106221905 @default.
- W3013265764 cites W2132267493 @default.
- W3013265764 cites W2136151826 @default.
- W3013265764 cites W2143554828 @default.
- W3013265764 cites W2166692930 @default.
- W3013265764 cites W2963420756 @default.
- W3013265764 cites W4244928213 @default.
- W3013265764 cites W49160414 @default.
- W3013265764 doi "https://doi.org/10.1089/big.2020.0074" @default.
- W3013265764 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32808829" @default.
- W3013265764 hasPublicationYear "2020" @default.
- W3013265764 type Work @default.
- W3013265764 sameAs 3013265764 @default.
- W3013265764 citedByCount "1" @default.
- W3013265764 countsByYear W30132657642023 @default.
- W3013265764 crossrefType "journal-article" @default.
- W3013265764 hasAuthorship W3013265764A5026125754 @default.
- W3013265764 hasAuthorship W3013265764A5054849323 @default.
- W3013265764 hasConcept C111919701 @default.
- W3013265764 hasConcept C11413529 @default.
- W3013265764 hasConcept C114614502 @default.
- W3013265764 hasConcept C119857082 @default.
- W3013265764 hasConcept C124101348 @default.
- W3013265764 hasConcept C127705205 @default.
- W3013265764 hasConcept C154945302 @default.
- W3013265764 hasConcept C155281189 @default.
- W3013265764 hasConcept C164226766 @default.
- W3013265764 hasConcept C173801870 @default.
- W3013265764 hasConcept C202444582 @default.
- W3013265764 hasConcept C22789450 @default.
- W3013265764 hasConcept C33923547 @default.
- W3013265764 hasConcept C41008148 @default.
- W3013265764 hasConcept C81917197 @default.
- W3013265764 hasConceptScore W3013265764C111919701 @default.
- W3013265764 hasConceptScore W3013265764C11413529 @default.
- W3013265764 hasConceptScore W3013265764C114614502 @default.
- W3013265764 hasConceptScore W3013265764C119857082 @default.
- W3013265764 hasConceptScore W3013265764C124101348 @default.
- W3013265764 hasConceptScore W3013265764C127705205 @default.
- W3013265764 hasConceptScore W3013265764C154945302 @default.
- W3013265764 hasConceptScore W3013265764C155281189 @default.
- W3013265764 hasConceptScore W3013265764C164226766 @default.
- W3013265764 hasConceptScore W3013265764C173801870 @default.
- W3013265764 hasConceptScore W3013265764C202444582 @default.
- W3013265764 hasConceptScore W3013265764C22789450 @default.
- W3013265764 hasConceptScore W3013265764C33923547 @default.
- W3013265764 hasConceptScore W3013265764C41008148 @default.
- W3013265764 hasConceptScore W3013265764C81917197 @default.
- W3013265764 hasIssue "5" @default.
- W3013265764 hasLocation W30132657641 @default.
- W3013265764 hasOpenAccess W3013265764 @default.
- W3013265764 hasPrimaryLocation W30132657641 @default.
- W3013265764 hasRelatedWork W1068348394 @default.
- W3013265764 hasRelatedWork W2033296278 @default.
- W3013265764 hasRelatedWork W2090211975 @default.
- W3013265764 hasRelatedWork W2093675364 @default.
- W3013265764 hasRelatedWork W2594987874 @default.
- W3013265764 hasRelatedWork W3016334469 @default.
- W3013265764 hasRelatedWork W3126937085 @default.
- W3013265764 hasRelatedWork W3202440455 @default.
- W3013265764 hasRelatedWork W4305008617 @default.
- W3013265764 hasRelatedWork W4360996558 @default.
- W3013265764 hasVolume "8" @default.
- W3013265764 isParatext "false" @default.
- W3013265764 isRetracted "false" @default.
- W3013265764 magId "3013265764" @default.
- W3013265764 workType "article" @default.