Matches in SemOpenAlex for { <https://semopenalex.org/work/W3013308410> ?p ?o ?g. }
- W3013308410 abstract "Compressive imaging is used to acquire a small number of measurements of a scene, and perform effective reconstruction or high-level inference with purely data-driven models using deep learning. Although random projection has some advantages, we can get improved performance by learning the multiplexing patterns, also known as the measurement operator/matrix. However, at the time of training, it is not clear what the number of measurements should be. In this paper, we answer the following important question: How can we find the optimal number of measurements as well as the measurement matrix that can maintain a high-level of performance? Given the cost per measurement, our solution is to use regularization functions to encourage low-rank solutions for the learned measurement operator. We demonstrate that our solutions are effective on both image recognition and reconstruction problems." @default.
- W3013308410 created "2020-04-03" @default.
- W3013308410 creator A5056968977 @default.
- W3013308410 creator A5062945520 @default.
- W3013308410 creator A5077902428 @default.
- W3013308410 creator A5080982846 @default.
- W3013308410 date "2019-11-01" @default.
- W3013308410 modified "2023-09-25" @default.
- W3013308410 title "Rank-Regularized Measurement Operators for Compressive Imaging" @default.
- W3013308410 cites W1828462930 @default.
- W3013308410 cites W1956120499 @default.
- W3013308410 cites W1995552537 @default.
- W3013308410 cites W1999455876 @default.
- W3013308410 cites W2018990310 @default.
- W3013308410 cites W2029213856 @default.
- W3013308410 cites W2062747674 @default.
- W3013308410 cites W2103972604 @default.
- W3013308410 cites W2112796928 @default.
- W3013308410 cites W2118103795 @default.
- W3013308410 cites W2118550318 @default.
- W3013308410 cites W2126131432 @default.
- W3013308410 cites W2130120519 @default.
- W3013308410 cites W2137825973 @default.
- W3013308410 cites W2140856955 @default.
- W3013308410 cites W2145096794 @default.
- W3013308410 cites W2171837816 @default.
- W3013308410 cites W2273561594 @default.
- W3013308410 cites W2289917018 @default.
- W3013308410 cites W2296616510 @default.
- W3013308410 cites W2432541215 @default.
- W3013308410 cites W2474424652 @default.
- W3013308410 cites W2517723848 @default.
- W3013308410 cites W2548198050 @default.
- W3013308410 cites W2590877996 @default.
- W3013308410 cites W2604885021 @default.
- W3013308410 cites W2609849229 @default.
- W3013308410 cites W2611328865 @default.
- W3013308410 cites W2798559986 @default.
- W3013308410 cites W2962895431 @default.
- W3013308410 cites W2963676935 @default.
- W3013308410 cites W2964121744 @default.
- W3013308410 cites W2964232913 @default.
- W3013308410 cites W2964251511 @default.
- W3013308410 cites W2979683669 @default.
- W3013308410 cites W3100774664 @default.
- W3013308410 cites W3102722370 @default.
- W3013308410 doi "https://doi.org/10.1109/ieeeconf44664.2019.9048686" @default.
- W3013308410 hasPublicationYear "2019" @default.
- W3013308410 type Work @default.
- W3013308410 sameAs 3013308410 @default.
- W3013308410 citedByCount "2" @default.
- W3013308410 countsByYear W30133084102021 @default.
- W3013308410 crossrefType "proceedings-article" @default.
- W3013308410 hasAuthorship W3013308410A5056968977 @default.
- W3013308410 hasAuthorship W3013308410A5062945520 @default.
- W3013308410 hasAuthorship W3013308410A5077902428 @default.
- W3013308410 hasAuthorship W3013308410A5080982846 @default.
- W3013308410 hasConcept C104317684 @default.
- W3013308410 hasConcept C106487976 @default.
- W3013308410 hasConcept C11413529 @default.
- W3013308410 hasConcept C114614502 @default.
- W3013308410 hasConcept C121332964 @default.
- W3013308410 hasConcept C124851039 @default.
- W3013308410 hasConcept C134306372 @default.
- W3013308410 hasConcept C141379421 @default.
- W3013308410 hasConcept C153180895 @default.
- W3013308410 hasConcept C154945302 @default.
- W3013308410 hasConcept C158448853 @default.
- W3013308410 hasConcept C159985019 @default.
- W3013308410 hasConcept C163716315 @default.
- W3013308410 hasConcept C164226766 @default.
- W3013308410 hasConcept C17020691 @default.
- W3013308410 hasConcept C185592680 @default.
- W3013308410 hasConcept C192562407 @default.
- W3013308410 hasConcept C25023664 @default.
- W3013308410 hasConcept C2776135515 @default.
- W3013308410 hasConcept C2776214188 @default.
- W3013308410 hasConcept C31972630 @default.
- W3013308410 hasConcept C33923547 @default.
- W3013308410 hasConcept C41008148 @default.
- W3013308410 hasConcept C55493867 @default.
- W3013308410 hasConcept C56372850 @default.
- W3013308410 hasConcept C57493831 @default.
- W3013308410 hasConcept C62520636 @default.
- W3013308410 hasConcept C86339819 @default.
- W3013308410 hasConcept C90199385 @default.
- W3013308410 hasConceptScore W3013308410C104317684 @default.
- W3013308410 hasConceptScore W3013308410C106487976 @default.
- W3013308410 hasConceptScore W3013308410C11413529 @default.
- W3013308410 hasConceptScore W3013308410C114614502 @default.
- W3013308410 hasConceptScore W3013308410C121332964 @default.
- W3013308410 hasConceptScore W3013308410C124851039 @default.
- W3013308410 hasConceptScore W3013308410C134306372 @default.
- W3013308410 hasConceptScore W3013308410C141379421 @default.
- W3013308410 hasConceptScore W3013308410C153180895 @default.
- W3013308410 hasConceptScore W3013308410C154945302 @default.
- W3013308410 hasConceptScore W3013308410C158448853 @default.
- W3013308410 hasConceptScore W3013308410C159985019 @default.
- W3013308410 hasConceptScore W3013308410C163716315 @default.
- W3013308410 hasConceptScore W3013308410C164226766 @default.