Matches in SemOpenAlex for { <https://semopenalex.org/work/W3013310134> ?p ?o ?g. }
- W3013310134 endingPage "6446" @default.
- W3013310134 startingPage "6425" @default.
- W3013310134 abstract "Phosphoglycerate kinase 1 (PGK1) plays important roles in glycolysis, yet its forward reaction kinetics are unknown, and its role especially in regulating cancer cell glycolysis is unclear. Here, we developed an enzyme assay to measure the kinetic parameters of the PGK1-catalyzed forward reaction. The Km values for 1,3-bisphosphoglyceric acid (1,3-BPG, the forward reaction substrate) were 4.36 μm (yeast PGK1) and 6.86 μm (human PKG1). The Km values for 3-phosphoglycerate (3-PG, the reverse reaction substrate and a serine precursor) were 146 μm (yeast PGK1) and 186 μm (human PGK1). The Vmax of the forward reaction was about 3.5- and 5.8-fold higher than that of the reverse reaction for the human and yeast enzymes, respectively. Consistently, the intracellular steady-state concentrations of 3-PG were between 180 and 550 μm in cancer cells, providing a basis for glycolysis to shuttle 3-PG to the serine synthesis pathway. Using siRNA-mediated PGK1-specific knockdown in five cancer cell lines derived from different tissues, along with titration of PGK1 in a cell-free glycolysis system, we found that the perturbation of PGK1 had no effect or only marginal effects on the glucose consumption and lactate generation. The PGK1 knockdown increased the concentrations of fructose 1,6-bisphosphate, dihydroxyacetone phosphate, glyceraldehyde 3-phosphate, and 1,3-BPG in nearly equal proportions, controlled by the kinetic and thermodynamic states of glycolysis. We conclude that perturbation of PGK1 in cancer cells insignificantly affects the conversion of glucose to lactate in glycolysis. Phosphoglycerate kinase 1 (PGK1) plays important roles in glycolysis, yet its forward reaction kinetics are unknown, and its role especially in regulating cancer cell glycolysis is unclear. Here, we developed an enzyme assay to measure the kinetic parameters of the PGK1-catalyzed forward reaction. The Km values for 1,3-bisphosphoglyceric acid (1,3-BPG, the forward reaction substrate) were 4.36 μm (yeast PGK1) and 6.86 μm (human PKG1). The Km values for 3-phosphoglycerate (3-PG, the reverse reaction substrate and a serine precursor) were 146 μm (yeast PGK1) and 186 μm (human PGK1). The Vmax of the forward reaction was about 3.5- and 5.8-fold higher than that of the reverse reaction for the human and yeast enzymes, respectively. Consistently, the intracellular steady-state concentrations of 3-PG were between 180 and 550 μm in cancer cells, providing a basis for glycolysis to shuttle 3-PG to the serine synthesis pathway. Using siRNA-mediated PGK1-specific knockdown in five cancer cell lines derived from different tissues, along with titration of PGK1 in a cell-free glycolysis system, we found that the perturbation of PGK1 had no effect or only marginal effects on the glucose consumption and lactate generation. The PGK1 knockdown increased the concentrations of fructose 1,6-bisphosphate, dihydroxyacetone phosphate, glyceraldehyde 3-phosphate, and 1,3-BPG in nearly equal proportions, controlled by the kinetic and thermodynamic states of glycolysis. We conclude that perturbation of PGK1 in cancer cells insignificantly affects the conversion of glucose to lactate in glycolysis. The aerobic glycolysis (Warburg effect, WE) 2The abbreviations used are: WEWarburg effectG6Pglucose 6-phosphateF6Pfructose 6-phosphateFBPfructose 1,6-bisphosphateGA3Pglyceraldehyde 3-phosphate3-PG3-phosphoglycerate2-PG2-phosphoglyceratePEPphosphoenolpyruvatePyrpyruvateHKhexokinasePGIphosphohexose isomerasePFKphosphofructokinaseTPItriose-phosphate isomeraseGAPDHglyceraldehyde-3-phosphate dehydrogenasePGKphosphoglycerate kinasePKpyruvate kinaseLDHlactate dehydrogenaseFCCflux control coefficientNCnegative controlDHAPdihydroxyacetone phosphateMTS3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium, inner salt1,3-BPG1,3-bisphosphoglyceric acidPHGDHphosphoglycerate dehydrogenaseMGmethylglyoxalFBSfetal bovine serumG6PDHglucose-6-phosphate dehydrogenasePESphenazine ethosulfateAQC6-aminoquinoline N-succinimidyl ester. is a metabolic hallmark of cancer cells. Inhibiting WE is recognized as an approach to treat cancer (1Altman B.J. Stine Z.E. Dang C.V. From Krebs to clinic: glutamine metabolism to cancer therapy.Nat. Rev. Cancer. 2016; 16 (27492215): 619-63410.1038/nrc.2016.71Crossref PubMed Scopus (1059) Google Scholar, 2Cascone T. McKenzie J.A. Mbofung R.M. Punt S. Wang Z. Xu C. Williams L.J. Wang Z. Bristow C.A. Carugo A. Peoples M.D. Li L. Karpinets T. Huang L. Malu S. et al.Increased tumor glycolysis characterizes immune resistance to adoptive T cell therapy.Cell Metab. 2018; 27 (29628419): 977-987.e410.1016/j.cmet.2018.02.024Abstract Full Text Full Text PDF PubMed Scopus (300) Google Scholar, 3Nakazawa M.S. Keith B. Simon M.C. Oxygen availability and metabolic adaptations.Nat. Rev. Cancer. 2016; 16 (27658636): 663-67310.1038/nrc.2016.84Crossref PubMed Scopus (242) Google Scholar, 4Yang M. Vousden K.H. Serine and one-carbon metabolism in cancer.Nat. Rev. Cancer. 2016; 16 (27634448): 650-66210.1038/nrc.2016.81Crossref PubMed Scopus (481) Google Scholar, 5Hanahan D. Weinberg R.A. Hallmarks of cancer: the next generation.Cell. 2011; 144 (21376230): 646-67410.1016/j.cell.2011.02.013Abstract Full Text Full Text PDF PubMed Scopus (43037) Google Scholar). The rate-limiting enzymes along glycolysis are recognized as targets for inhibiting WE (6Wolf A. Agnihotri S. Micallef J. Mukherjee J. Sabha N. Cairns R. Hawkins C. Guha A. Hexokinase 2 is a key mediator of aerobic glycolysis and promotes tumor growth in human glioblastoma multiforme.J. Exp. Med. 2011; 208 (21242296): 313-32610.1084/jem.20101470Crossref PubMed Scopus (550) Google Scholar, 7DeWaal D. Nogueira V. Terry A.R. Patra K.C. Jeon S.M. Guzman G. Au J. Long C.P. Antoniewicz M.R. Hay N. Hexokinase-2 depletion inhibits glycolysis and induces oxidative phosphorylation in hepatocellular carcinoma and sensitizes to metformin.Nat. Commun. 2018; 9 (29386513): 44610.1038/s41467-017-02733-4Crossref PubMed Scopus (230) Google Scholar, 8Liberti M.V. Dai Z. Wardell S.E. Baccile J.A. Liu X. Gao X. Baldi R. Mehrmohamadi M. Johnson M.O. Madhukar N.S. Shestov A.A. Chio I.I.C. Elemento O. Rathmell J.C. Schroeder F.C. et al.A predictive model for selective targeting of the Warburg effect through GAPDH inhibition with a natural product.Cell Metab. 2017; 26 (28918937): 648-659.e810.1016/j.cmet.2017.08.017Abstract Full Text Full Text PDF PubMed Scopus (109) Google Scholar, 9Zhong X.Y. Yuan X.M. Xu Y.Y. Yin M. Yan W.W. Zou S.W. Wei L.M. Lu H.J. Wang Y.P. Lei Q.Y. CARM1 methylates GAPDH to regulate glucose metabolism and is suppressed in liver cancer.Cell Rep. 2018; 24 (30232003): 3207-322310.1016/j.celrep.2018.08.066Abstract Full Text Full Text PDF PubMed Scopus (70) Google Scholar, 10Shestov A.A. Liu X. Ser Z. Cluntun A.A. Hung Y.P. Huang L. Kim D. Le A. Yellen G. Albeck J.G. Locasale J.W. Quantitative determinants of aerobic glycolysis identify flux through the enzyme GAPDH as a limiting step.eLife. 2014; 3 (25009227)10.7554/eLife.03342Crossref PubMed Scopus (163) Google Scholar, 11Locasale J.W. New concepts in feedback regulation of glucose metabolism.Curr. Opin. Syst. Biol. 2018; 8 (31602417): 32-3810.1016/j.coisb.2017.11.005Crossref PubMed Scopus (20) Google Scholar, 12Yun J. Mullarky E. Lu C. Bosch K.N. Kavalier A. Rivera K. Roper J. Chio I.I. Giannopoulou E.G. Rago C. Muley A. Asara J.M. Paik J. Elemento O. Chen Z. Pappin D.J. et al.Vitamin C selectively kills KRAS and BRAF mutant colorectal cancer cells by targeting GAPDH.Science. 2015; 350 (26541605): 1391-139610.1126/science.aaa5004Crossref PubMed Scopus (582) Google Scholar). Warburg effect glucose 6-phosphate fructose 6-phosphate fructose 1,6-bisphosphate glyceraldehyde 3-phosphate 3-phosphoglycerate 2-phosphoglycerate phosphoenolpyruvate pyruvate hexokinase phosphohexose isomerase phosphofructokinase triose-phosphate isomerase glyceraldehyde-3-phosphate dehydrogenase phosphoglycerate kinase pyruvate kinase lactate dehydrogenase flux control coefficient negative control dihydroxyacetone phosphate 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium, inner salt 1,3-bisphosphoglyceric acid phosphoglycerate dehydrogenase methylglyoxal fetal bovine serum glucose-6-phosphate dehydrogenase phenazine ethosulfate 6-aminoquinoline N-succinimidyl ester. Previous studies demonstrated that PGK1 was a rate-limiting enzyme in the glycolysis of cancer cells (13Hu H. Zhu W. Qin J. Chen M. Gong L. Li L. Liu X. Tao Y. Yin H. Zhou H. Zhou L. Ye D. Ye Q. Gao D. Acetylation of PGK1 promotes liver cancer cell proliferation and tumorigenesis.Hepatology. 2017; 65 (27774669): 515-52810.1002/hep.28887Crossref PubMed Scopus (132) Google Scholar, 14Zhang Y. Yu G. Chu H. Wang X. Xiong L. Cai G. Liu R. Gao H. Tao B. Li W. Li G. Liang J. Yang W. Macrophage-associated PGK1 phosphorylation promotes aerobic glycolysis and tumorigenesis.Mol. Cell. 2018; 71 (30029001): 201-215.e710.1016/j.molcel.2018.06.023Abstract Full Text Full Text PDF PubMed Scopus (137) Google Scholar, 15Li X. Jiang Y. Meisenhelder J. Yang W. Hawke D.H. Zheng Y. Xia Y. Aldape K. He J. Hunter T. Wang L. Lu Z. Mitochondria-translocated PGK1 functions as a protein kinase to coordinate glycolysis and the TCA cycle in tumorigenesis.Mol. Cell. 2016; 61 (26942675): 705-71910.1016/j.molcel.2016.02.009Abstract Full Text Full Text PDF PubMed Scopus (237) Google Scholar, 16Christofk H.R. Vander Heiden M.G. Wu N. Asara J.M. Cantley L.C. Pyruvate kinase M2 is a phosphotyrosine-binding protein.Nature. 2008; 452 (18337815): 181-18610.1038/nature06667Crossref PubMed Scopus (787) Google Scholar, 17Anastasiou D. Poulogiannis G. Asara J.M. Boxer M.B. Jiang J.K. Shen M. Bellinger G. Sasaki A.T. Locasale J.W. Auld D.S. Thomas C.J. Vander Heiden M.G. Cantley L.C. Inhibition of pyruvate kinase M2 by reactive oxygen species contributes to cellular antioxidant responses.Science. 2011; 334 (22052977): 1278-128310.1126/science.1211485Crossref PubMed Scopus (826) Google Scholar, 18Chaneton B. Hillmann P. Zheng L. Martin A.C.L. Maddocks O.D.K. Chokkathukalam A. Coyle J.E. Jankevics A. Holding F.P. Vousden K.H. Frezza C. O'Reilly M. Gottlieb E. Serine is a natural ligand and allosteric activator of pyruvate kinase M2.Nature. 2012; 491 (23064226): 458-46210.1038/nature11540Crossref PubMed Scopus (422) Google Scholar, 19Anastasiou D. Yu Y. Israelsen W.J. Jiang J.K. Boxer M.B. Hong B.S. Tempel W. Dimov S. Shen M. Jha A. Yang H. Mattaini K.R. Metallo C.M. Fiske B.P. Courtney K.D. et al.Pyruvate kinase M2 activators promote tetramer formation and suppress tumorigenesis.Nat. Chem. Biol. 2012; 8 (22922757): 839-84710.1038/nchembio.1060Crossref PubMed Scopus (510) Google Scholar). PGK1 catalyzes a step at the middle of glycolysis and produces ATP and 3-PG (a precursor for serine). Given the high glycolytic rate, PGK1 activity accounts for a large part in maintaining the energy homeostasis and serine biosynthesis. Clinically, PGK1 was overexpressed in many types of tumors (20Hwang T.L. Liang Y. Chien K.Y. Yu J.S. Overexpression and elevated serum levels of phosphoglycerate kinase 1 in pancreatic ductal adenocarcinoma.Proteomics. 2006; 6 (16493704): 2259-227210.1002/pmic.200500345Crossref PubMed Scopus (111) Google Scholar, 21Yan H. Yang K. Xiao H. Zou Y.J. Zhang W.B. Liu H.Y. Over-expression of cofilin-1 and phosphoglycerate kinase 1 in astrocytomas involved in pathogenesis of radioresistance.CNS Neurosci. Ther. 2012; 18 (22742733): 729-73610.1111/j.1755-5949.2012.00353.xCrossref PubMed Scopus (42) Google Scholar, 22Ahmad S.S. Glatzle J. Bajaeifer K. Bühler S. Lehmann T. Königsrainer I. Vollmer J.P. Sipos B. Ahmad S.S. Northoff H. Königsrainer A. Zieker D. Phosphoglycerate kinase 1 as a promoter of metastasis in colon cancer.Int. J. Oncol. 2013; 43 (23727790): 586-59010.3892/ijo.2013.1971Crossref PubMed Scopus (74) Google Scholar, 23Zieker D. Königsrainer I. Tritschler I. Löffler M. Beckert S. Traub F. Nieselt K. Bühler S. Weller M. Gaedcke J. Taichman R.S. Northoff H. Brücher B.L. Königsrainer A. Phosphoglycerate kinase 1 a promoting enzyme for peritoneal dissemination in gastric cancer.Int. J. Cancer. 2010; 126 (19688824): 1513-152010.1002/ijc.24835PubMed Google Scholar, 24Ai J. Huang H. Lv X. Tang Z. Chen M. Chen T. Duan W. Sun H. Li Q. Tan R. Liu Y. Duan J. Yang Y. Wei Y. Li Y. Zhou Q. FLNA and PGK1 are two potential markers for progression in hepatocellular carcinoma.Cell. Physiol. Biochem. 2011; 27 (21471709): 207-21610.1159/000327946Crossref PubMed Scopus (75) Google Scholar). Experimentally, it is found that this enzyme was dynamically modulated in cells. This enzyme was transcriptionally up-regulated by HIF1 (25Kress S. Stein A. Maurer P. Weber B. Reichert J. Buchmann A. Huppert P. Schwarz M. Expression of hypoxia-inducible genes in tumor cells.J. Cancer Res. Clin. Oncol. 1998; 124 (9692838): 315-32010.1007/s004320050175Crossref PubMed Scopus (78) Google Scholar) but down-regulated by PPAR-γ (26Shashni B. Sakharkar K.R. Nagasaki Y. Sakharkar M.K. Glycolytic enzymes PGK1 and PKM2 as novel transcriptional targets of PPARγ in breast cancer pathophysiology.J. Drug Target. 2013; 21 (23130662): 161-17410.3109/1061186X.2012.736998Crossref PubMed Scopus (42) Google Scholar). Hu et al. (13Hu H. Zhu W. Qin J. Chen M. Gong L. Li L. Liu X. Tao Y. Yin H. Zhou H. Zhou L. Ye D. Ye Q. Gao D. Acetylation of PGK1 promotes liver cancer cell proliferation and tumorigenesis.Hepatology. 2017; 65 (27774669): 515-52810.1002/hep.28887Crossref PubMed Scopus (132) Google Scholar) reported that PGK1 could be acetylated by PCAF and Sirtuin 7, and the acetylation of PGK1 enhanced its activity and promoted glycolysis and liver cancer tumorigenesis. Zhang et al. (14Zhang Y. Yu G. Chu H. Wang X. Xiong L. Cai G. Liu R. Gao H. Tao B. Li W. Li G. Liang J. Yang W. Macrophage-associated PGK1 phosphorylation promotes aerobic glycolysis and tumorigenesis.Mol. Cell. 2018; 71 (30029001): 201-215.e710.1016/j.molcel.2018.06.023Abstract Full Text Full Text PDF PubMed Scopus (137) Google Scholar) demonstrated that polarized M2 macrophages secreted IL-6, which enhances PGK1 phosphorylation in tumor cells and promoted glycolysis, and this phosphorylation is associated with malignance and prognosis of human GBM. Li et al. (15Li X. Jiang Y. Meisenhelder J. Yang W. Hawke D.H. Zheng Y. Xia Y. Aldape K. He J. Hunter T. Wang L. Lu Z. Mitochondria-translocated PGK1 functions as a protein kinase to coordinate glycolysis and the TCA cycle in tumorigenesis.Mol. Cell. 2016; 61 (26942675): 705-71910.1016/j.molcel.2016.02.009Abstract Full Text Full Text PDF PubMed Scopus (237) Google Scholar) revealed that, apart from its canonical activity, PGK1 could translocate into mitochondria to phosphorylate and to activate PDHK1, which in turn phosphorylated and inhibited PDH, impairing the TCA cycle and enhancing glycolysis. In contrast, Tanner et al. (27Tanner L.B. Goglia A.G. Wei M.H. Sehgal T. Parsons L.R. Park J.O. White E. Toettcher J.E. Rabinowitz J.D. Four key steps control glycolytic flux in mammalian cells.Cell Syst. 2018; 7 (29960885): 49-62.e810.1016/j.cels.2018.06.003Abstract Full Text Full Text PDF PubMed Scopus (177) Google Scholar) reported that a perturbation of PGK1 did not significantly affect glycolysis. The mixed reports indicated a vague understanding of the mechanism by which PGK1 regulates glycolysis. As the rate control of glycolysis is fundamentally a question of kinetics and thermodynamics of glycolysis, we sought to investigate the effect of perturbing PGK1 on glycolysis with respect to thermodynamics and related kinetics. To investigate the above-mentioned questions, we sought to know the kinetics of PGK1. PGK1 catalyzes a reversible reaction, and its reverse-reaction kinetics is known, but its forward reaction kinetics is unknown because there are no available methods for research. Some studies reported that the forward reaction activity of PGK1 could be measured by the production of NADH, with a reaction mixture containing GA3P, β-NAD, and ADP (13Hu H. Zhu W. Qin J. Chen M. Gong L. Li L. Liu X. Tao Y. Yin H. Zhou H. Zhou L. Ye D. Ye Q. Gao D. Acetylation of PGK1 promotes liver cancer cell proliferation and tumorigenesis.Hepatology. 2017; 65 (27774669): 515-52810.1002/hep.28887Crossref PubMed Scopus (132) Google Scholar, 28Chen X. Zhao C. Li X. Wang T. Li Y. Cao C. Ding Y. Dong M. Finci L. Wang J.H. Li X. Liu L. Terazosin activates Pgk1 and Hsp90 to promote stress resistance.Nat. Chem. Biol. 2015; 11 (25383758): 19-2510.1038/nchembio.1657Crossref PubMed Scopus (57) Google Scholar). The forward reaction of PGK1 can promote GAPDH to produce NADH (13Hu H. Zhu W. Qin J. Chen M. Gong L. Li L. Liu X. Tao Y. Yin H. Zhou H. Zhou L. Ye D. Ye Q. Gao D. Acetylation of PGK1 promotes liver cancer cell proliferation and tumorigenesis.Hepatology. 2017; 65 (27774669): 515-52810.1002/hep.28887Crossref PubMed Scopus (132) Google Scholar, 28Chen X. Zhao C. Li X. Wang T. Li Y. Cao C. Ding Y. Dong M. Finci L. Wang J.H. Li X. Liu L. Terazosin activates Pgk1 and Hsp90 to promote stress resistance.Nat. Chem. Biol. 2015; 11 (25383758): 19-2510.1038/nchembio.1657Crossref PubMed Scopus (57) Google Scholar). This method may tell the difference of the NADH generation rate with or without PGK1, but it cannot accurately measure the activity of PGK1 nor the kinetic parameters. Therefore, we developed a method to accurately measure the forward reaction kinetics of PGK1. We designed a coupled-enzyme assay to measure the forward-reaction rate of PGK1. In a reaction mixture containing GA3P, NAD, and Pi, by adding excessive amounts of GAPDH, Reaction 1 would rapidly reach equilibrium.GA3P+NAD+Pi↔GAPDH1,3-BPG+NADHReaction 1 The equilibrium of the reactions is monitored at 340 nm, which increases at first and then remains stable (Fig. 1), which is indicative of the equilibrium state. By adding ADP and PGK1 into the reaction mixture, we initiate Reaction 2 (Fig. 1).1,3-BPG+ADP↔PGK13-PG+ATPReaction 2 Consumption of 1,3-BPG immediately disrupts the equilibrium state of Reaction 1, thus driving GA3P and NAD to 1,3-BPG and NADH. The rate of NADH generation can be readily spectrophotometrically monitored. According to Reactions 1 and 2, we could derive the following equations: 1) the number of 3-PG molecules generated = the numbers of 1,3-BPG molecules consumed; 2) the number of 1,3-BPG molecules consumed = the numbers of GA3P molecules consumed; 3) the number of GA3P molecules generated = the numbers of NADH molecules generated; and 4) therefore, NADH generation rate = turnover rate of 1,3-BPG to 3-PG catalyzed by PGK1. Therefore, the initial rate of PGK1 could be accurately measured. For measurement, based on the equilibrium of Reaction 1, we set serial concentrations of GA3P, which gave rise to the serial concentrations of 1,3-BPG (Fig. 2A). Then we determined the Km and Vmax values of human and yeast PGK1 (Fig. 2, B and C). The Km values for 1,3-BPG were 4.36 μm (yeast) and 6.86 μm (human); the Km values for 3-PG were 146 μm (yeast) and 186 μm (human), and the Vmax of the forward reaction (from 1,3-BPG to 3PG) was about 3.5-fold (human) and 5-fold (yeast) higher than that of the reverse reaction (Fig. 2D), indicating that the enzyme favors the forward reaction. By setting 1,3-BPG at a saturating concentration (about 50 μm) and varying the ADP concentrations (0.02 to 2 mm), we obtained the Km value for ADP (Fig. 2D). We sought to explore the physiological meaning of the kinetic parameters of PGK1 in glycolysis. The low Km for 1,3-BPG, the high Km for 3-PG, and the much higher rates of the forward reaction than those of the reverse reaction are the biochemical bases to maintain a low concentration of 1,3-BPG and a high concentration of 3-PG in cells. Indeed, cellular 3-PG concentrations were kept at relatively high concentrations, between 0.18 and 0.55 mm (depending on the cell lines) (Table 1). 3-PG is a precursor for serine synthesis. Phosphoglycerate dehydrogenase (PHGDH), which catalyzes the first step for de novo serine synthesis, has the Km value of 0.26 mm for 3-PG (29Fan J. Teng X. Liu L. Mattaini K.R. Looper R.E. Vander Heiden M.G. Rabinowitz J.D. Human phosphoglycerate dehydrogenase produces the oncometabolite d-2-hydroxyglutarate.ACS Chem. Biol. 2015; 10 (25406093): 510-51610.1021/cb500683cCrossref PubMed Scopus (126) Google Scholar). Keeping a high cellular 3-PG concentration is very important for this molecule to shuttle to serine synthesis, because the specific activity (at saturating concentration of 3-PG) of PHGDH in cancer cell is very low. The activity was undetectable even using 0.15 mg of cell lysate protein in our assay system, whereas the HK activity could be accurately determined using 0.03 mg of cell lysate protein.Table 1Intracellular Glc and glycolytic intermediate concentration (mm) in cells with or without PGK1 knockdownMetabolites (mm)GlcG6PF6PFBPDHAPGA3P3PG2PGPEPPyrADPATPNADNADHHeLa-NC5.56 ± 0.0370.56 ± 0.070.12 ± 0.080.38 ± 0.0350.75 ± 0.040.05 ± 0.020.28 ± 0.040.09 ± 0.030.10 ± 0.0140.20 ± 0.030.71 ± 0.123.80 ± 0.580.68 ± 0.110.033 ± 0.005HeLa-siPGK15.52 ± 0.030.57 ± 0.10.14 ± 0.110.65 ± 0.002***1.28 ± 0.08***0.09 ± 0.03*0.28 ± 0.030.07 ± 0.020.11 ± 0.020.14 ± 0.030.61 ± 0.073.10 ± 0.540.66 ± 0.120.035 ± 0.008MGC80–3-NC3.9 ± 0.070.43 ± 0.040.12 ± 0.030.28 ± 0.010.58 ± 0.050.05 ± 0.020.18 ± 0.050.10 ± 0.0660.15 ± 0.0040.27 ± 0.020.59 ± 0.0143.74 ± 0.210.58 ± 0.040.039 ± 0.004MGC80–3-siPGK13.96 ± 0.110.44 ± 0.050.11 ± 0.020.55 ± 0.014***1.17 ± 0.1***0.096 ± 0.04*0.14 ± 0.070.078 ± 0.040.15 ± 0.0010.21 ± 0.02*0.83 ± 0.0624.54 ± 0.80.78 ± 0.120.048 ± 0.005RKO-NC5.2 ± 0.470.31 ± 0.0150.11 ± 0.0110.37 ± 0.0340.47 ± 0.040.043 ± 0.0030.55 ± 0.070.066 ± 0.0280.06 ± 0.030.56 ± 0.046.7 ± 0.1911.3 ± 0.541.45 ± 0.030.16 ± 0.01RKO-siPGK15.2 ± 0.140.29 ± 0.10.13 ± 0.0370.50 ± 0.04*0.77 ± 0.091**0.073 ± 0.005**0.43 ± 0.120.085 ± 0.0170.049 ± 0.0130.48 ± 0.076.9 ± 0.2511.5 ± 0.641.45 ± 0.060.16 ± 0.003SK-HEP-1-NC3.88 ± 0.240.29 ± 0.0280.078 ± 0.0220.24 ± 0.0370.55 ± 0.0470.045 ± 0.0060.49 ± 0.090.13 ± 0.0450.23 ± 0.0640.51 ± 0.0960.77 ± 0.059.3 ± 0.070.93 ± 0.0010.025 ± 0.003SK-HEP-1-siPGK13.4 ± 0.180.35 ± 0.050.11 ± 0.0320.39 ± 0.035**0.8 ± 0.045**0.066 ± 0.009*0.52 ± 0.110.13 ± 0.0540.29 ± 0.0220.51 ± 0.100.77 ± 0.059.9 ± 0.420.72 ± 0.550.029 ± 0.003A549-NC4.2 ± 0.040.21 ± 0.040.038 ± 0.0030.14 ± 0.030.28 ± 0.030.021 ± 0.0020.22 ± 0.0440.071 ± 0.030.084 ± 0.040.64 ± 0.0660.84 ± 0.05710.7 ± 0.251.78 ± 0.0330.28 ± 0.009A549-siPGK13.7 ± 0.05***0.177 ± 0.010.05 ± 0.0130.20 ± 0.035*0.54 ± 0.08***0.042 ± 0.003***0.21 ± 0.0520.069 ± 0.0180.085 ± 0.0310.625 ± 0.0140.9 ± 0.06911.1 ± 0.561.78 ± 0.0380.28 ± 0.01 Open table in a new tab HK2 knockdown reduced HK activity by ∼50%, glucose consumption by ∼40%, and lactate generation by ∼50% (Fig. 3A). However, HK2 knockdown did not significantly reduce the 3-PG concentration (Fig. 3B) and serine synthesis, as manifested by the analysis of the serine isotopologues (Fig. 3C). The m + 0 serine species is provided by the culture medium, and m + 3 serine isotopologue was generated from [13C6]glucose through 3-PG. The consumption rate of m + 0 serine was comparable between control cells and HK2 knockdown cells (Fig. 3C, left panel), and the percentages of extracellular and intracellular m + 0 and m + 3 serine species were also comparable between control cells and HK2 knockdown (Fig. 3C, middle and right panels). A fraction of serine was further used for glycine synthesis. The consumption rate of glycine (m + 0, which is provided by culture medium) is comparable between control and HK2 knockdown cells (Fig. 3D, left panel) and so were the percentages of extracellular and intracellular glycine (m + 2, which is derived from m + 3 serine) (Fig. 3D, middle and right panels). These data support that glucose carbon shuttling to serine and glycine was not significantly affected by HK2 knockdown, and even HK2 knockdown reduced the glycolysis rate to lactate by 50%. Taken together, the kinetic parameters of PGK1 are associated with a stable steady-state concentration of 3-PG in cancer cells, which is around the Km value of PHGDH, underlying a sound biochemical basis for glycolysis to shuttle to the de novo serine synthesis pathway. We used five cell lines from different tissue origins (cervical cancer cell line HeLa, gastric cancer cell line MGC80-3, colon cancer cell line RKO, lung cancer cell line A549, and liver cancer cell line SK-HEP-1). These cells were derived from different organs from different patients, representing five types of cancer cell lines. They exhibited widespread mutations (30Ahmed D. Eide P.W. Eilertsen I.A. Danielsen S.A. Eknæs M. Hektoen M. Lind G.E. Lothe R.A. Epigenetic and genetic features of 24 colon cancer cell lines.Oncogenesis. 2013; 2 (24042735): e7110.1038/oncsis.2013.35Crossref PubMed Scopus (574) Google Scholar, 31Zhao Y. Chen Y. Hu Y. Wang J. Xie X. He G. Chen H. Shao Q. Zeng H. Zhang H. Genomic alterations across six hepatocellular carcinoma cell lines by panel-based sequencing.Transl. Cancer Res. 2018; 7: 231-23910.21037/tcr.2018.02.14Crossref Scopus (9) Google Scholar, 32Berg K.C.G. Eide P.W. Eilertsen I.A. Johannessen B. Bruun J. Danielsen S.A. Bjørnslett M. Meza-Zepeda L.A. Eknaes M. Lind G.E. Myklebost O. Skotheim R.I. Sveen A. Lothe R.A. Multi-omics of 34 colorectal cancer cell lines–a resource for biomedical studies.Mol. Cancer. 2017; 16 (28683746): 11610.1186/s12943-017-0691-yCrossref PubMed Scopus (171) Google Scholar, 33Blanco R. Iwakawa R. Tang M. Kohno T. Angulo B. Pio R. Montuenga L.M. Minna J.D. Yokota J. Sanchez-Cespedes M. A gene-alteration profile of human lung cancer cell lines.Hum. Mutat. 2009; 30 (19472407): 1199-120610.1002/humu.21028Crossref PubMed Scopus (100) Google Scholar). HeLa cells had WT TP53, but p53 protein was repressed because of overexpression of human papillomavirus type 16 E6 (34Yaginuma Y. Westphal H. Analysis of the p53 gene in human uterine carcinoma cell lines.Cancer Res. 1991; 51 (1660340): 6506-6509PubMed Google Scholar, 35Hoppe-Seyler F. Butz K. Repression of endogenous p53 transactivation function in HeLa cervical carcinoma cells by human papillomavirus type 16 E6, human mdm-2, and mutant p53.J. Virol. 1993; 67 (8388491): 3111-311710.1128/JVI.67.6.3111-3117.1993Crossref PubMed Google Scholar). In MGC80-3, decreased expression of TWSG1 was detected compared with normal gastric cells (36Yuan J. Zeng J. Shuai C. Liu Y. TWSG1 is a novel tumor suppressor in gastric cancer.DNA Cell Biol. 2018; 37 (29756996): 574-58310.1089/dna.2018.4188Crossref PubMed Scopus (7) Google Scholar). In RKO cells, TP53 was WT, whereas PTEN, KRAS, BRAF, and PIK3CA were mutated (30Ahmed D. Eide P.W. Eilertsen I.A. Danielsen S.A. Eknæs M. Hektoen M. Lind G.E. Lothe R.A. Epigenetic and genetic features of 24 colon cancer cell lines.Oncogenesis. 2013; 2 (24042735): e7110.1038/oncsis.2013.35Crossref PubMed Scopus (574) Google Scholar, 32Berg K.C.G. Eide P.W. Eilertsen I.A. Johannessen B. Bruun J. Danielsen S.A. Bjørnslett M. Meza-Zepeda L.A. Eknaes M. Lind G.E. Myklebost O. Skotheim R.I. Sveen A. Lothe R.A. Multi-omics of 34 colorectal cancer cell lines–a resource for biomedical studies.Mol. Cancer. 2017; 16 (28683746): 11610.1186/s12943-017-0691-yCrossref PubMed Scopus (171) Google Scholar). WT TP53 was detected in both SK-HEP-1 and A549. BRAF was mutated in SK-HEP-1, whereas CDKN2A and KRAS were mutated in A549 cells (31Zhao Y. Chen Y. Hu Y. Wang J. Xie X. He G. Chen H. Shao Q. Zeng H. Zhang H. Genomic alterations across six hepatocellular carcinoma cell lines by panel-based sequencing.Transl. Cancer Res. 2018; 7: 231-23910.21037/tcr.2018.02.14Crossref Scopus (9) Google Scholar, 33Blanco R. Iwakawa R. Tang M. Kohno T. Angulo B. Pio R. Montuenga L.M. Minna J.D. Yokota J. Sanchez-Cespedes M. A gene-alteration profile of human lung cancer cell lines.Hum. Mutat. 2009; 30 (19472407): 1199-120610.1002/humu.21028Crossref PubMed Scopus (100) Google Scholar). Despite the differences, they shared the same metabolic feature, the Warburg effect. They exhibited a similar pattern of glycolytic enzymes (Fig. 4A), and they converted most incoming glucose to lactate (Fig. 4B). If the glucose consumption rate is expressed by kilograms of glucose/kg of cells per day, the number would be larger than 1.5 kg per kg of cancer cells per day (Fig. 4C). Thus, the data demonstrated that these cells shared the feature of the Warburg effect. This is consistent with the general consensus that the Warburg effect is characteristic of essentially all types of cancer cells (37Vander Heiden M.G. Cantley L.C. Thompson C.B. Understanding the Warburg effect: the metabolic requirements of cell proliferation.Science. 2009; 324 (19460998): 1029-103310.1126/science.1160809Crossref PubMed Scopus (10199) Google Scholar, 38Hsu P.P. Sabatini D.M. Cancer cell metabolism: Warburg and beyond.Cell. 2008; 134 (18775299): 703-70710.1016/j.cell.2008.08.021Abstract Full Text Full Text PDF PubMed Scopus (1733) Google Scholar, 39Cairns R.A. Harris I.S. Mak T.W. Regulation of cancer cell metabolism.Nat. Rev. Cancer. 2011; 11 (21258394): 85-9510.1038/nrc2981Crossref PubMed Scopus (3572) Google Scholar). Mechanistically, the Warburg effect is programmed by a complex signaling network composed of oncogenic activation and tumor suppressor inactivation or insufficiency, including but not limited to Ras, Raf, ERK, JNK, Myc, HIF, p53, PI3K, Akt, etc. (38Hsu P.P. Sabatini D.M. Cancer cell metabolism: Warburg and beyond.Cell. 2008; 134 (18775299): 703-70710.1016/j.cell.2008.08.021Abstract Full Text Full Text PDF PubMed Scopus (1733) Google Scholar, 40Wieman H.L. Wofford J.A. Rathmell J.C. Cytokine stimulation promotes glucose uptake via phosphatidylinositol-3 kinase/Akt regulation of Glut1 activity and trafficking." @default.
- W3013310134 created "2020-04-03" @default.
- W3013310134 creator A5024691619 @default.
- W3013310134 creator A5041976342 @default.
- W3013310134 creator A5082158663 @default.
- W3013310134 creator A5083869508 @default.
- W3013310134 creator A5088408496 @default.
- W3013310134 date "2020-05-01" @default.
- W3013310134 modified "2023-10-12" @default.
- W3013310134 title "Perturbation of phosphoglycerate kinase 1 (PGK1) only marginally affects glycolysis in cancer cells" @default.
- W3013310134 cites W1525939857 @default.
- W3013310134 cites W1969932284 @default.
- W3013310134 cites W1970766774 @default.
- W3013310134 cites W1976691637 @default.
- W3013310134 cites W1978094886 @default.
- W3013310134 cites W1983749833 @default.
- W3013310134 cites W1985369656 @default.
- W3013310134 cites W1989962016 @default.
- W3013310134 cites W1991387623 @default.
- W3013310134 cites W1991510903 @default.
- W3013310134 cites W1992372128 @default.
- W3013310134 cites W1994827807 @default.
- W3013310134 cites W1995444593 @default.
- W3013310134 cites W2011775422 @default.
- W3013310134 cites W2011863699 @default.
- W3013310134 cites W2016535776 @default.
- W3013310134 cites W2017947908 @default.
- W3013310134 cites W2022101765 @default.
- W3013310134 cites W2025462705 @default.
- W3013310134 cites W2028897202 @default.
- W3013310134 cites W2039558597 @default.
- W3013310134 cites W2040764501 @default.
- W3013310134 cites W2062515127 @default.
- W3013310134 cites W2062680909 @default.
- W3013310134 cites W2086155222 @default.
- W3013310134 cites W2097259163 @default.
- W3013310134 cites W2097774235 @default.
- W3013310134 cites W2106787801 @default.
- W3013310134 cites W2117692326 @default.
- W3013310134 cites W2121288523 @default.
- W3013310134 cites W2121727754 @default.
- W3013310134 cites W2122816851 @default.
- W3013310134 cites W2125836344 @default.
- W3013310134 cites W2127049578 @default.
- W3013310134 cites W2137741805 @default.
- W3013310134 cites W2143464189 @default.
- W3013310134 cites W2144542772 @default.
- W3013310134 cites W2153041190 @default.
- W3013310134 cites W2160745333 @default.
- W3013310134 cites W2163471981 @default.
- W3013310134 cites W2166268973 @default.
- W3013310134 cites W2168280552 @default.
- W3013310134 cites W2168330194 @default.
- W3013310134 cites W2292259030 @default.
- W3013310134 cites W2336609578 @default.
- W3013310134 cites W2337672766 @default.
- W3013310134 cites W2339493109 @default.
- W3013310134 cites W2464879055 @default.
- W3013310134 cites W2503851771 @default.
- W3013310134 cites W2519435458 @default.
- W3013310134 cites W2521282167 @default.
- W3013310134 cites W2534608553 @default.
- W3013310134 cites W2729239885 @default.
- W3013310134 cites W2742797230 @default.
- W3013310134 cites W2755085647 @default.
- W3013310134 cites W2775560768 @default.
- W3013310134 cites W2795915709 @default.
- W3013310134 cites W2801000404 @default.
- W3013310134 cites W2804223208 @default.
- W3013310134 cites W2810661705 @default.
- W3013310134 cites W2884876534 @default.
- W3013310134 cites W2890254814 @default.
- W3013310134 cites W2897079052 @default.
- W3013310134 cites W2898508564 @default.
- W3013310134 cites W2898767623 @default.
- W3013310134 cites W2911438911 @default.
- W3013310134 cites W2943530694 @default.
- W3013310134 cites W4234589830 @default.
- W3013310134 doi "https://doi.org/10.1074/jbc.ra119.012312" @default.
- W3013310134 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7212654" @default.
- W3013310134 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32217690" @default.
- W3013310134 hasPublicationYear "2020" @default.
- W3013310134 type Work @default.
- W3013310134 sameAs 3013310134 @default.
- W3013310134 citedByCount "15" @default.
- W3013310134 countsByYear W30133101342021 @default.
- W3013310134 countsByYear W30133101342022 @default.
- W3013310134 countsByYear W30133101342023 @default.
- W3013310134 crossrefType "journal-article" @default.
- W3013310134 hasAuthorship W3013310134A5024691619 @default.
- W3013310134 hasAuthorship W3013310134A5041976342 @default.
- W3013310134 hasAuthorship W3013310134A5082158663 @default.
- W3013310134 hasAuthorship W3013310134A5083869508 @default.
- W3013310134 hasAuthorship W3013310134A5088408496 @default.
- W3013310134 hasBestOaLocation W30133101341 @default.
- W3013310134 hasConcept C121332964 @default.
- W3013310134 hasConcept C155911427 @default.
- W3013310134 hasConcept C177918212 @default.