Matches in SemOpenAlex for { <https://semopenalex.org/work/W3013317867> ?p ?o ?g. }
- W3013317867 abstract "Abstract Quantification of stillbirth risk has potential to support clinical decision-making. Studies that have attempted to quantify stillbirth risk have been hampered by small event rates, a limited range of predictors that typically exclude obstetric history, lack of validation, and restriction to a single classifier (logistic regression). Consequently, predictive performance remains low, and risk quantification has not been adopted into antenatal practice. The study population consisted of all births to women in Western Australia from 1980 to 2015, excluding terminations. After all exclusions there were 947,025 livebirths and 5,788 stillbirths. Predictive models for stillbirth were developed using multiple machine learning classifiers: regularised logistic regression, decision trees based on classification and regression trees, random forest, extreme gradient boosting (XGBoost), and a multilayer perceptron neural network. We applied 10-fold cross-validation using independent data not used to develop the models. Predictors included maternal socio-demographic characteristics, chronic medical conditions, obstetric complications and family history in both the current and previous pregnancy. In this cohort, 66% of stillbirths were observed for multiparous women. The best performing classifier (XGBoost) predicted 45% (95% CI: 43%, 46%) of stillbirths for all women and 45% (95% CI: 43%, 47%) of stillbirths after the inclusion of previous pregnancy history. Almost half of stillbirths could be potentially identified antenatally based on a combination of current pregnancy complications, congenital anomalies, maternal characteristics, and medical history. Greatest sensitivity is achieved with addition of current pregnancy complications. Ensemble classifiers offered marginal improvement for prediction compared to logistic regression." @default.
- W3013317867 created "2020-04-03" @default.
- W3013317867 creator A5001635051 @default.
- W3013317867 creator A5005347157 @default.
- W3013317867 creator A5010696517 @default.
- W3013317867 creator A5010948852 @default.
- W3013317867 creator A5019395318 @default.
- W3013317867 creator A5023162602 @default.
- W3013317867 creator A5023485346 @default.
- W3013317867 creator A5026648749 @default.
- W3013317867 creator A5029332515 @default.
- W3013317867 creator A5034367790 @default.
- W3013317867 creator A5037089154 @default.
- W3013317867 creator A5037266998 @default.
- W3013317867 creator A5039633120 @default.
- W3013317867 creator A5045457076 @default.
- W3013317867 creator A5052680950 @default.
- W3013317867 creator A5060966354 @default.
- W3013317867 creator A5091827928 @default.
- W3013317867 date "2020-03-24" @default.
- W3013317867 modified "2023-10-17" @default.
- W3013317867 title "Stillbirth risk prediction using machine learning for a large cohort of births from Western Australia, 1980–2015" @default.
- W3013317867 cites W1963414467 @default.
- W3013317867 cites W1980946892 @default.
- W3013317867 cites W2110678046 @default.
- W3013317867 cites W2150820296 @default.
- W3013317867 cites W2227252066 @default.
- W3013317867 cites W2302649842 @default.
- W3013317867 cites W2509531816 @default.
- W3013317867 cites W2516401674 @default.
- W3013317867 cites W2518909627 @default.
- W3013317867 cites W2523342415 @default.
- W3013317867 cites W2581214018 @default.
- W3013317867 cites W2594025478 @default.
- W3013317867 cites W2765604175 @default.
- W3013317867 cites W2767545930 @default.
- W3013317867 cites W2783196040 @default.
- W3013317867 cites W2787894218 @default.
- W3013317867 cites W2911964244 @default.
- W3013317867 cites W3102476541 @default.
- W3013317867 cites W4234926822 @default.
- W3013317867 doi "https://doi.org/10.1038/s41598-020-62210-9" @default.
- W3013317867 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7093523" @default.
- W3013317867 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32210300" @default.
- W3013317867 hasPublicationYear "2020" @default.
- W3013317867 type Work @default.
- W3013317867 sameAs 3013317867 @default.
- W3013317867 citedByCount "32" @default.
- W3013317867 countsByYear W30133178672020 @default.
- W3013317867 countsByYear W30133178672021 @default.
- W3013317867 countsByYear W30133178672022 @default.
- W3013317867 countsByYear W30133178672023 @default.
- W3013317867 crossrefType "journal-article" @default.
- W3013317867 hasAuthorship W3013317867A5001635051 @default.
- W3013317867 hasAuthorship W3013317867A5005347157 @default.
- W3013317867 hasAuthorship W3013317867A5010696517 @default.
- W3013317867 hasAuthorship W3013317867A5010948852 @default.
- W3013317867 hasAuthorship W3013317867A5019395318 @default.
- W3013317867 hasAuthorship W3013317867A5023162602 @default.
- W3013317867 hasAuthorship W3013317867A5023485346 @default.
- W3013317867 hasAuthorship W3013317867A5026648749 @default.
- W3013317867 hasAuthorship W3013317867A5029332515 @default.
- W3013317867 hasAuthorship W3013317867A5034367790 @default.
- W3013317867 hasAuthorship W3013317867A5037089154 @default.
- W3013317867 hasAuthorship W3013317867A5037266998 @default.
- W3013317867 hasAuthorship W3013317867A5039633120 @default.
- W3013317867 hasAuthorship W3013317867A5045457076 @default.
- W3013317867 hasAuthorship W3013317867A5052680950 @default.
- W3013317867 hasAuthorship W3013317867A5060966354 @default.
- W3013317867 hasAuthorship W3013317867A5091827928 @default.
- W3013317867 hasBestOaLocation W30133178671 @default.
- W3013317867 hasConcept C119857082 @default.
- W3013317867 hasConcept C126322002 @default.
- W3013317867 hasConcept C131872663 @default.
- W3013317867 hasConcept C151956035 @default.
- W3013317867 hasConcept C169258074 @default.
- W3013317867 hasConcept C206179267 @default.
- W3013317867 hasConcept C2779234561 @default.
- W3013317867 hasConcept C2908647359 @default.
- W3013317867 hasConcept C41008148 @default.
- W3013317867 hasConcept C54355233 @default.
- W3013317867 hasConcept C71924100 @default.
- W3013317867 hasConcept C72563966 @default.
- W3013317867 hasConcept C84525736 @default.
- W3013317867 hasConcept C86803240 @default.
- W3013317867 hasConcept C99454951 @default.
- W3013317867 hasConceptScore W3013317867C119857082 @default.
- W3013317867 hasConceptScore W3013317867C126322002 @default.
- W3013317867 hasConceptScore W3013317867C131872663 @default.
- W3013317867 hasConceptScore W3013317867C151956035 @default.
- W3013317867 hasConceptScore W3013317867C169258074 @default.
- W3013317867 hasConceptScore W3013317867C206179267 @default.
- W3013317867 hasConceptScore W3013317867C2779234561 @default.
- W3013317867 hasConceptScore W3013317867C2908647359 @default.
- W3013317867 hasConceptScore W3013317867C41008148 @default.
- W3013317867 hasConceptScore W3013317867C54355233 @default.
- W3013317867 hasConceptScore W3013317867C71924100 @default.
- W3013317867 hasConceptScore W3013317867C72563966 @default.
- W3013317867 hasConceptScore W3013317867C84525736 @default.
- W3013317867 hasConceptScore W3013317867C86803240 @default.