Matches in SemOpenAlex for { <https://semopenalex.org/work/W3013385770> ?p ?o ?g. }
Showing items 1 to 77 of
77
with 100 items per page.
- W3013385770 abstract "Ground-based aircraft trajectory prediction is a major concern in air traffic control and management. Focusing on the climb phase, we predict some of the unknown point-mass model parameters. These unknown parameters are the mass and the speed intent. This speed intent is parameterized by three values (cas 1 , cas 2 , $M$ ). These missing parameters might be useful to predict the future trajectory of a climbing aircraft. In this work, an ensemble of neural networks uses the observed past trajectory of the considered aircraft as input and predicts a Gaussian Mixture Model (GMM) modeling the joint distribution of (mass, cas 1 , cas 2 , $M$ ). Ideally, this predicted distribution will be close to a conditional distribution: the distribution of possible (mass, cas 1 , cas 2 , $M$ ) values given the observed past trajectory of the considered aircraft. This study relies on ADS-B data coming from The OpenSky Network. It contains the climbing segments of the year 2017 detected by this sensor network. The obtained data set contains millions of climbing segments from all over the world. Using this data, we show that using the proposed predictive model instead of a regression model brings almost as much information as using a regression model instead of a simple mean. The data set and the machine learning code are publicly available." @default.
- W3013385770 created "2020-04-03" @default.
- W3013385770 creator A5052035815 @default.
- W3013385770 date "2020-02-01" @default.
- W3013385770 modified "2023-10-01" @default.
- W3013385770 title "Predictive Joint Distribution of the Mass and Speed Profile to Improve Aircraft Climb Prediction" @default.
- W3013385770 cites W1502922572 @default.
- W3013385770 cites W1567512734 @default.
- W3013385770 cites W1579853615 @default.
- W3013385770 cites W1719489212 @default.
- W3013385770 cites W1813928862 @default.
- W3013385770 cites W2095705004 @default.
- W3013385770 cites W2108677974 @default.
- W3013385770 cites W2123838014 @default.
- W3013385770 cites W2133631887 @default.
- W3013385770 cites W2293249096 @default.
- W3013385770 cites W2316629306 @default.
- W3013385770 cites W2712278496 @default.
- W3013385770 cites W2767685043 @default.
- W3013385770 cites W2797413543 @default.
- W3013385770 cites W2808871787 @default.
- W3013385770 cites W2891589865 @default.
- W3013385770 cites W2895874880 @default.
- W3013385770 cites W2907014416 @default.
- W3013385770 cites W2908510526 @default.
- W3013385770 cites W2963190151 @default.
- W3013385770 cites W2963238274 @default.
- W3013385770 cites W2963623071 @default.
- W3013385770 cites W2963995504 @default.
- W3013385770 cites W2964054038 @default.
- W3013385770 cites W2964059111 @default.
- W3013385770 cites W2970859221 @default.
- W3013385770 cites W3000508506 @default.
- W3013385770 cites W3174556590 @default.
- W3013385770 cites W40584723 @default.
- W3013385770 doi "https://doi.org/10.1109/aida-at48540.2020.9049196" @default.
- W3013385770 hasPublicationYear "2020" @default.
- W3013385770 type Work @default.
- W3013385770 sameAs 3013385770 @default.
- W3013385770 citedByCount "1" @default.
- W3013385770 countsByYear W30133857702020 @default.
- W3013385770 crossrefType "proceedings-article" @default.
- W3013385770 hasAuthorship W3013385770A5052035815 @default.
- W3013385770 hasBestOaLocation W30133857702 @default.
- W3013385770 hasConcept C127413603 @default.
- W3013385770 hasConcept C146978453 @default.
- W3013385770 hasConcept C178802073 @default.
- W3013385770 hasConcept C18555067 @default.
- W3013385770 hasConcept C2778168010 @default.
- W3013385770 hasConcept C41008148 @default.
- W3013385770 hasConcept C66938386 @default.
- W3013385770 hasConceptScore W3013385770C127413603 @default.
- W3013385770 hasConceptScore W3013385770C146978453 @default.
- W3013385770 hasConceptScore W3013385770C178802073 @default.
- W3013385770 hasConceptScore W3013385770C18555067 @default.
- W3013385770 hasConceptScore W3013385770C2778168010 @default.
- W3013385770 hasConceptScore W3013385770C41008148 @default.
- W3013385770 hasConceptScore W3013385770C66938386 @default.
- W3013385770 hasLocation W30133857701 @default.
- W3013385770 hasLocation W30133857702 @default.
- W3013385770 hasLocation W30133857703 @default.
- W3013385770 hasOpenAccess W3013385770 @default.
- W3013385770 hasPrimaryLocation W30133857701 @default.
- W3013385770 hasRelatedWork W2030530201 @default.
- W3013385770 hasRelatedWork W2045580624 @default.
- W3013385770 hasRelatedWork W2083329214 @default.
- W3013385770 hasRelatedWork W2337925540 @default.
- W3013385770 hasRelatedWork W2625858699 @default.
- W3013385770 hasRelatedWork W2949515039 @default.
- W3013385770 hasRelatedWork W300045524 @default.
- W3013385770 hasRelatedWork W3096054746 @default.
- W3013385770 hasRelatedWork W4238935506 @default.
- W3013385770 hasRelatedWork W635238925 @default.
- W3013385770 isParatext "false" @default.
- W3013385770 isRetracted "false" @default.
- W3013385770 magId "3013385770" @default.
- W3013385770 workType "article" @default.